Abscisic Acid Promotes Susceptibility to the Rice Leaf Blight Pathogen Xanthomonas oryzae pv oryzae by Suppressing Salicylic Acid-Mediated Defenses

被引:128
作者
Xu, Jing [1 ]
Audenaert, Kris [1 ,2 ]
Hofte, Monica [1 ]
De Vleesschauwer, David [1 ]
机构
[1] Univ Ghent, Phytopathol Lab, B-9000 Ghent, Belgium
[2] Ghent Univ Coll, Fac Appl Biosci Engn, Ghent, Belgium
来源
PLOS ONE | 2013年 / 8卷 / 06期
关键词
REAL-TIME PCR; DISEASE RESISTANCE; PSEUDOMONAS-SYRINGAE; BOTRYTIS-CINEREA; ABIOTIC STRESS; ANTAGONISTIC INTERACTION; FUNCTIONAL-ANALYSIS; MAGNAPORTHE-GRISEA; HORMONE CROSSTALK; SIGNALING PATHWAY;
D O I
10.1371/journal.pone.0067413
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The plant hormone abscisic acid (ABA) is involved in a wide variety of plant processes, including the initiation of stress-adaptive responses to various environmental cues. Recently, ABA also emerged as a central factor in the regulation and integration of plant immune responses, although little is known about the underlying mechanisms. Aiming to advance our understanding of ABA-modulated disease resistance, we have analyzed the impact, dynamics and interrelationship of ABA and the classic defense hormone salicylic acid (SA) during progression of rice infection by the leaf blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Consistent with ABA negatively regulating resistance to Xoo, we found that exogenously administered ABA renders rice hypersusceptible to infection, whereas chemical and genetic disruption of ABA biosynthesis and signaling, respectively, led to enhanced Xoo resistance. In addition, we found successful Xoo infection to be associated with extensive reprogramming of ABA biosynthesis and response genes, suggesting that ABA functions as a virulence factor for Xoo. Interestingly, several lines of evidence indicate that this immune-suppressive effect of ABA is due at least in part to suppression of SA-mediated defenses that normally serve to limit pathogen growth. Resistance induced by the ABA biosynthesis inhibitor fluridone, however, appears to operate in a SA-independent manner and is likely due to induction of non-specific physiological stress. Collectively, our findings favor a scenario whereby virulent Xoo hijacks the rice ABA machinery to cause disease and highlight the importance of ABA and its crosstalk with SA in shaping the outcome of rice-Xoo interactions.
引用
收藏
页数:10
相关论文
共 72 条
[1]  
Achuo E. A., 2003, Communications in Agricultural and Applied Biological Sciences, V68, P49
[2]   Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici [J].
Achuo, EA ;
Prinsen, E ;
Höfte, M .
PLANT PATHOLOGY, 2006, 55 (02) :178-186
[3]   ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis [J].
Adie, Bruce A. T. ;
Perez-Perez, Julian ;
Perez-Perez, Manuel M. ;
Godoy, Marta ;
Sanchez-Serrano, Jose-J. ;
Schmelz, Eric A. ;
Solano, Roberto .
PLANT CELL, 2007, 19 (05) :1665-1681
[4]   Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis [J].
Anderson, JP ;
Badruzsaufari, E ;
Schenk, PM ;
Manners, JM ;
Desmond, OJ ;
Ehlert, C ;
Maclean, DJ ;
Ebert, PR ;
Kazan, K .
PLANT CELL, 2004, 16 (12) :3460-3479
[5]   Global switches and fine-tuning -: ABA modulates plant pathogen defense [J].
Asselbergh, Bob ;
De Vleesschauwer, David ;
Hofte, Monica .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2008, 21 (06) :709-719
[6]  
Asselbergh B, 2008, MOL PLANT PATHOL, V9, P11, DOI [10.1111/J.1364-3703.2007.00437.X, 10.1111/j.1364-3703.2007.00437.x]
[7]  
Audenaert K, 2002, PLANT PHYSIOL, V128, P491, DOI 10.1104/pp.010605
[8]   Role of Ethylene, Abscisic Acid and MAP Kinase Pathways in Rice Blast Resistance [J].
Bailey, Tameka A. ;
Zhou, Xiangjun ;
Chen, Jianping ;
Yang, Yinong .
ADVANCES IN GENETICS, GENOMICS AND CONTROL OF RICE BLAST DISEASE, 2009, :185-+
[9]   Role of plant hormones in plant defence responses [J].
Bari, Rajendra ;
Jones, Jonathan D. G. .
PLANT MOLECULAR BIOLOGY, 2009, 69 (04) :473-488
[10]  
Brooks DM, 2005, MOL PLANT PATHOL, V6, P629, DOI [10.1111/j.1364-3703.2005.00311.x, 10.1111/J.1364-3703.2005.00311.X]