Biochemical and pre-steady-state kinetic characterization of the hepatitis C virus RNA polymerase (NS5BA21, HC-J4)

被引:19
作者
Cramer, J
Jaeger, J
Restle, T
机构
[1] Univ Klinikum Schleswig Holstein, Inst Mol Med, D-23538 Lubeck, Germany
[2] Max Planck Inst Mol Physiol, Phys Biochem Abt, D-44227 Dortmund, Germany
[3] New York State Dept Hlth, Wadsworth Ctr, Ctr Med Sci, Albany, NY 12208 USA
关键词
D O I
10.1021/bi051483s
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Here we report a detailed characterization of the biochemical and kinetic properties of the hepatitis C virus (HCV, genotype-1b, J4 consensus) RNA-dependent RNA polymerase NS5B, by performing comprehensive RNA binding,nucleotide incorporation, and protein/protein oligomerization studies. By applying equilibrium fluorescence titrations, we determined a surprisingly high dissociation constant (K-d) of approximately 250 nM for single-stranded as well as for partially double-stranded RNA. A detailed analysis of the nucleic acid binding mechanism using pre-steady-state techniques revealed the association reaction to be nearly diffusion controlled. It occurs in a single step with a second-order rate constant (k(on)) of 0.273 nM(-1) s(-1). The dissociation of the nucleic acid-polymerase complex is fast with a dissociation rate constant (k(off)) of 59.3 s(-1). With short, partially double-stranded RNAs, no nucleotide incorporation could be observed, while de novo RNA synthesis with short RNA templates showed nucleotide incorporation and end-to-end template switching events. Sing le-turnover, single-nucleotide incorporation studies (representing here the initiation and not processive polymerization) using dinucleotide primers revealed a very slow incorporation rate (k(pol)) of 0.0007 s(-1) and a K-d of the binary enzyme-nucleic acid complex for the incoming ATP of 27.7 mu M. Using dynamic laser light scattering. it could be shown for the first time that oligomerization of HCV NS5B is a dynamic and monovalent salt concentration dependent process. While NS5B is highly oligomeric at low salt concentrations, monomers were only observed at NaCl concentrations above 300 mM. Binding of short RNA substrates led to a further increase in oligomerization, whereas GTP did not show any effect on protein/protein interactions. Furthermore., nucleotide incorporation studies indicate the oligomerization state does not correlate with enzymatic activities as previously proposed.
引用
收藏
页码:3610 / 3619
页数:10
相关论文
共 50 条
[1]   The essential role of C-terminal residues in regulating the activity of hepatitis C virus RNA-dependent RNA polymerase [J].
Adachi, T ;
Ago, H ;
Habuka, N ;
Okuda, K ;
Komatsu, M ;
Ikeda, S ;
Yatsunami, K .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2002, 1601 (01) :38-48
[2]   Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus [J].
Ago, H ;
Adachi, T ;
Yoshida, A ;
Yamamoto, M ;
Habuka, N ;
Yatsunami, K ;
Miyano, M .
STRUCTURE, 1999, 7 (11) :1417-1426
[3]   Correlated template-switching events during minus-strand DNA synthesis: a mechanism for high negative interference during retroviral recombination [J].
Anderson, JA ;
Teufel, RJ ;
Yin, PD ;
Hu, WS .
JOURNAL OF VIROLOGY, 1998, 72 (02) :1186-1194
[4]   Poliovirus RNA-dependent RNA polymerase (3Dpol) is sufficient for template switching in vitro [J].
Arnold, JJ ;
Cameron, CE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (05) :2706-2716
[5]   Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus [J].
Behrens, SE ;
Tomei, L ;
DeFrancesco, R .
EMBO JOURNAL, 1996, 15 (01) :12-22
[6]   Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus [J].
Bressanelli, S ;
Tomei, L ;
Roussel, A ;
Incitti, I ;
Vitale, RL ;
Mathieu, M ;
De Francesco, R ;
Rey, FA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :13034-13039
[7]   Structural analysis of the hepatitis C virus RNA polymerase in complex with Ribonucleotides [J].
Bressanelli, S ;
Tomei, L ;
Rey, FA ;
De Francesco, R .
JOURNAL OF VIROLOGY, 2002, 76 (07) :3482-3492
[8]   A mechanism for initiating RNA-dependent RNA polymerization [J].
Butcher, SJ ;
Grimes, JM ;
Makeyev, EV ;
Bamford, DH ;
Stuart, DL .
NATURE, 2001, 410 (6825) :235-240
[9]   The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation [J].
Choi, KH ;
Groarke, JM ;
Young, DC ;
Kuhn, RJ ;
Smith, JL ;
Pevear, DC ;
Rossmann, MG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (13) :4425-4430
[10]   Characterization of soluble hepatitis C virus RNA-dependent RNA polymerase expressed in Escherichia coli [J].
Ferrari, E ;
Wright-Minogue, J ;
Fang, JWS ;
Baroudy, BM ;
Lau, JYN ;
Hong, Z .
JOURNAL OF VIROLOGY, 1999, 73 (02) :1649-1654