A vital role for glycosphingolipid synthesis during development and differentiation

被引:380
作者
Yamashita, T
Wada, R
Sasaki, T
Deng, CX
Bierfreund, U
Sandhoff, K
Proia, RL
机构
[1] NIDDKD, Genet Dev & Dis Branch, NIH, Bethesda, MD 20892 USA
[2] Univ Bonn, Kekule Inst Organ Chem & Biochem, D-53121 Bonn, Germany
关键词
D O I
10.1073/pnas.96.16.9142
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glycosphingolipids (GSLs) are believed to be integral for the dynamics of many cell membrane events, including cellular interactions, signaling, and trafficking. We have investigated their roles in development and differentiation by eliminating the major synthesis pathway of GSLs through targeted disruption of the Ugcg gene encoding glucosylceramide synthase, In the absence of GSL synthesis, embryogenesis proceeded well into gastrulation with differentiation into primitive germ layers and patterning of the embryo but was abruptly halted bg a major apoptotic process. In vivo, embryonic stem cells deficient in GSL synthesis were again able to differentiate into endodermal, mesodermal, and ectodermal derivatives but were strikingly deficient in their ability to form well differentiated tissues. In vitro, however, hematopoietic and neuronal differentiation could be induced. The results demonstrate that the synthesis of GSL structures is essential for embryonic development and for the differentiation of some tissues and support the concept that GSLs are involved in crucial cell interactions mediating these processes.
引用
收藏
页码:9142 / 9147
页数:6
相关论文
共 48 条
[1]   The caveolae membrane system [J].
Anderson, RGW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :199-225
[2]  
ANG SL, 1994, DEVELOPMENT, V120, P2979
[3]   EMBRYONIC STEM-CELLS EXPRESS NEURONAL PROPERTIES IN-VITRO [J].
BAIN, G ;
KITCHENS, D ;
YAO, M ;
HUETTNER, JE ;
GOTTLIEB, DI .
DEVELOPMENTAL BIOLOGY, 1995, 168 (02) :342-357
[4]   ALTERING THE GENOME BY HOMOLOGOUS RECOMBINATION [J].
CAPECCHI, MR .
SCIENCE, 1989, 244 (4910) :1288-1292
[5]   DISRUPTION OF THE HNF-4 GENE, EXPRESSED IN VISCERAL ENDODERM, LEADS TO CELL-DEATH IN EMBRYONIC ECTODERM AND IMPAIRED GASTRULATION OF MOUSE EMBRYOS [J].
CHEN, WS ;
MANOVA, K ;
WEINSTEIN, DC ;
DUNCAN, SA ;
PLUMP, AS ;
PREZIOSO, VR ;
BACHVAROVA, RF ;
DARNELL, JE .
GENES & DEVELOPMENT, 1994, 8 (20) :2466-2477
[6]   SIGNALS FOR DEATH AND SURVIVAL - A 2-STEP MECHANISM FOR CAVITATION IN THE VERTEBRATE EMBRYO [J].
COUCOUVANIS, E ;
MARTIN, GR .
CELL, 1995, 83 (02) :279-287
[7]   MURINE FGFR-1 IS REQUIRED FOR EARLY POSTIMPLANTATION GROWTH AND AXIAL ORGANIZATION [J].
DENG, CX ;
WYNSHAWBORIS, A ;
SHEN, MM ;
DAUGHERTY, C ;
ORNITZ, DM ;
LEDER, P .
GENES & DEVELOPMENT, 1994, 8 (24) :3045-3057
[8]   Fibroblast growth factor receptor 3 is a negative regulator of bone growth [J].
Deng, CX ;
WynshawBoris, A ;
Zhou, F ;
Kuo, A ;
Leder, P .
CELL, 1996, 84 (06) :911-921
[9]   Pten is essential for embryonic development and tumour suppression [J].
Di Cristofano, A ;
Pesce, B ;
Cordon-Cardo, C ;
Pandolfi, PP .
NATURE GENETICS, 1998, 19 (04) :348-355
[10]  
Dragatsis I, 1998, DEVELOPMENT, V125, P1529