SLCPM12 - A program for solving regular Sturm-Liouville problems

被引:45
作者
Ixaru, LG
De Meyer, H
Vanden Berghe, G
机构
[1] State Univ Ghent, Dept Comp Sci & Appl Math, B-9000 Ghent, Belgium
[2] Inst Phys & Nucl Engn, Bucharest, Romania
关键词
Sturm-Liouville problem; Schrodinger equation; CP method; eigenvalue problem; Liouville's transformation; eigenfunction;
D O I
10.1016/S0010-4655(98)00181-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The code SLCPM12 first converts the original Sturm-Liouville equation into an equation of the Schrodinger form and then it solves the latter by means of a suited highly accurate method. The conversion is done by using Liouville's transformation and the numerical method for solving the Schrodinger equation is CPM{12, 10} developed by Ixaru, De Meyer and Vanden Berghe, CP Methods for the Schrodinger Equation revisited, J. Comput. Appl. Math. (1998). The new code is by far faster and more accurate than other existing codes, e.g. SLEDGE, SLEIGN and SL02F. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 8 条
[1]  
Bailey P. B., 1978, ACM Transactions on Mathematical Software, V4, P193, DOI 10.1145/355791.355792
[2]   CP methods for the Schrodinger equation revisited [J].
Ixaru, LG ;
De Meyer, H ;
Vanden Berghe, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 88 (02) :289-314
[3]  
IXARU LG, 1984, NUMERICAL METHODS DI
[4]   AUTOMATIC SOLUTION OF STURM-LIOUVILLE PROBLEMS USING THE PRUESS METHOD [J].
MARLETTA, M ;
PRYCE, JD .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 39 (01) :57-78
[5]   ON THE CORRECTION OF FINITE-DIFFERENCE EIGENVALUE APPROXIMATIONS FOR STURM-LIOUVILLE PROBLEMS [J].
PAINE, JW ;
de Hoog, FR ;
ANDERSSEN, RS .
COMPUTING, 1981, 26 (02) :123-139
[6]   MATHEMATICAL SOFTWARE FOR STURM-LIOUVILLE PROBLEMS [J].
PRUESS, S ;
FULTON, CT .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1993, 19 (03) :360-376
[7]  
Pryce J., 1993, Monographs on Numerical Analysis
[8]  
PRYCE JD, 1996, SEASCISEJDP0396 ROY