Positive end-expiratory pressure oscillation facilitates brain vascular reactivity monitoring

被引:38
作者
Brady, Ken M. [1 ]
Easley, R. Blaine [1 ]
Kibler, Kathleen [1 ]
Kaczka, David W. [2 ]
Andropoulos, Dean [1 ]
Fraser, Charles D., III [3 ]
Smielewski, Peter [4 ]
Czosnyka, Marek [4 ]
Adams, Gerald J. [1 ]
Rhee, Christopher J. [1 ]
Rusin, Craig G. [1 ]
机构
[1] Texas Childrens Hosp, Baylor Coll Med, Houston, TX 77030 USA
[2] Harvard Univ, Sch Med, Boston, MA USA
[3] Univ Texas Houston, Sch Med, Houston, TX USA
[4] Univ Cambridge, Addenbrookes Hosp, Neurosurg Unit, Cambridge CB2 2QQ, England
关键词
cerebrovascular autoregulation; pressure reactivity; positive end-expiratory pressure; neonatal; CEREBRAL PERFUSION-PRESSURE; NEAR-INFRARED SPECTROSCOPY; BLOOD-FLOW VELOCITY; CEREBROVASCULAR REACTIVITY; INTRACRANIAL-PRESSURE; PHASE RELATIONSHIP; AUTOREGULATION; INJURY; HUMANS;
D O I
10.1152/japplphysiol.00853.2012
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Brady KM, Easley RB, Kibler K, Kaczka DW, Andropoulos D, Fraser CD 3rd, Smielewski P, Czosnyka M, Adams GJ, Rhee CJ, Rusin CG. Positive end-expiratory pressure oscillation facilitates brain vascular reactivity monitoring. J Appl Physiol 113: 1362-1368, 2012. First published September 13, 2012; doi:10.1152/japplphysiol.00853.2012.-The pressure reactivity index (PRx) identifies optimal cerebral perfusion pressure after traumatic brain injury. We describe a method to improve PRx precision by induced variations in arterial blood pressure (ABP) using positive end-expiratory pressure (PEEP) modulation (iPRx). Neonatal swine (n = 10) were ventilated with static PEEP and then with PEEP oscillated between 5 and 10 cmH(2)O at a frequency of 1/min. PRx was recorded as a moving correlation coefficient between ABP and intracranial pressure (ICP) from spontaneous ABP activity (0.05-0.003 Hz) during static PEEP. iPRx was similarly recorded with PEEP oscillation-induced ABP waves. The lower limit of autoregulation (LLA) was delineated with continuous cortical laser Doppler flux monitoring. PEEP oscillation increased autoregulation-monitoring precision. The ratios of median absolute deviations to range of possible values for the PRx and iPRx were 9.5% (8.3-13.7%) and 6.2% (4.2-8.7%), respectively (P = 0.006; median, interquartile range). The phase-angle difference between ABP and ICP above LLA was 161 degrees (150 degrees-166 degrees) and below LLA, -31 degrees (-42 degrees to 12 degrees, P < 0.0001). iPRx above LLA was -0.42 (-0.67 to -0.29) and below LLA, 0.32 (0.22-0.43, P = 0.0004). A positive iPRx was 97% specific and 91% sensitive for perfusion pressure below LLA. PEEP oscillation caused stable, low-frequency ABP oscillations that reduced noise in the PRx. Safe translation of these findings to clinical settings is expected to yield more accurate and rapid delineation of individualized optimal perfusion-pressure goals for patients.
引用
收藏
页码:1362 / 1368
页数:7
相关论文
共 19 条
[1]   CEREBRAL AUTO-REGULATION DYNAMICS IN HUMANS [J].
AASLID, R ;
LINDEGAARD, KF ;
SORTEBERG, W ;
NORNES, H .
STROKE, 1989, 20 (01) :45-52
[2]   Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury [J].
Aries, Marcel J. H. ;
Czosnyka, Marek ;
Budohoski, Karol P. ;
Steiner, Luzius A. ;
Lavinio, Andrea ;
Kolias, Angelos G. ;
Hutchinson, Peter J. ;
Brady, Ken M. ;
Menon, David K. ;
Pickard, John D. ;
Smielewski, Peter .
CRITICAL CARE MEDICINE, 2012, 40 (08) :2456-2463
[3]   Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure - Comparison of 3 methods [J].
Brady, Ken M. ;
Lee, Jennifer K. ;
Kibler, Kathleen K. ;
Easley, R. Blaine ;
Koehler, Raymond C. ;
Shaffner, Donald H. .
STROKE, 2008, 39 (09) :2531-2537
[4]   Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy [J].
Brady, Ken M. ;
Lee, Jennifer K. ;
Kibler, Kathleen K. ;
Smielewski, Piotr ;
Czosnyka, Marek ;
Easley, R. Blaine ;
Koehler, Raymond C. ;
Shaffner, Donald H. .
STROKE, 2007, 38 (10) :2818-2825
[5]   Noninvasive Autoregulation Monitoring with and without Intracranial Pressure in the Naive Piglet Brain [J].
Brady, Ken M. ;
Mytar, Jennifer O. ;
Kibler, Kathleen K. ;
Hogue, Charles W., Jr. ;
Lee, Jennifer K. ;
Czosnyka, Marek ;
Smielewski, Peter ;
Easley, R. Blaine .
ANESTHESIA AND ANALGESIA, 2010, 111 (01) :191-195
[6]   Continuous Monitoring of Cerebrovascular Pressure Reactivity After Traumatic Brain Injury in Children [J].
Brady, Ken M. ;
Shaffner, Donald H. ;
Lee, Jennifer K. ;
Easley, R. Blaine ;
Smielewski, Peter ;
Czosnyka, Marek ;
Jallo, George I. ;
Guerguerian, Anne-Marie .
PEDIATRICS, 2009, 124 (06) :E1205-E1212
[7]  
Brain Trauma Foundation, 2007, J Neurotrauma, V24 Suppl 1, pS59, DOI 10.1089/neu.2007.9990
[8]   Continuous assessment of the cerebral vasomotor reactivity in head injury [J].
Czosnyka, M ;
Smielewski, P ;
Kirkpatrick, P ;
Laing, RJ ;
Menon, D ;
Pickard, JD .
NEUROSURGERY, 1997, 41 (01) :11-17
[9]   Monitoring of Cerebrovascular Autoregulation: Facts, Myths, and Missing Links [J].
Czosnyka, Marek ;
Brady, Ken ;
Reinhard, Matthias ;
Smielewski, Piotr ;
Steiner, Luzius A. .
NEUROCRITICAL CARE, 2009, 10 (03) :373-386
[10]   The Limitations of Near-Infrared Spectroscopy to Assess Cerebrovascular Reactivity: The Role of Slow Frequency Oscillations [J].
Diedler, Jennifer ;
Zweifel, Christian ;
Budohoski, Karol P. ;
Kasprowicz, Magdalena ;
Sorrentino, Enrico ;
Haubrich, Christina ;
Brady, Kenneth M. ;
Czosnyka, Marek ;
Pickard, John D. ;
Smielewski, Peter .
ANESTHESIA AND ANALGESIA, 2011, 113 (04) :849-857