Thermodynamic models of aqueous solutions containing inorganic electrolytes and dicarboxylic acids at 298.15 K. 2. Systems including dissociation equilibria

被引:95
作者
Clegg, Simon L. [1 ]
Seinfeld, John H.
机构
[1] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[2] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA
基金
英国自然环境研究理事会;
关键词
D O I
10.1021/jp056150j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pitzer activity coefficient models are developed, using a wide range of data at 298.15 K, for the following systems containing succinic acid (H(2)Succ) and/or succinate salts: {H+, Li+, Na+, K+, Rb+, Cs+}Cl--H-2-Succ- H2O, HNO3-H(2)Succ-H2O, H+-NH4+-HSucc(-)-Succ(2-)-NH3-H(2)Succ-H2O, NH4Cl-(NH4)(2)Succ-H2O, H+-Na+-HSucc(-)-Succ(2-)-Cl--H(2)Succ-H2O, NH4NO3-H(2)Succ-H2O, and H2SO4-H(2)Succ-H2O. The above compositions are given in terms of ions in the cases where acid dissociation was considered. Pitzer models were also developed for the following systems containing malonic acid (H(2)Malo): H+-Na+-HMalo(-)- Malo(2-)-Cl--H(2)Malo-H2O, and H(2)Malo-H2SO4-H2O. The models are used to evaluate the extended Zdanovskii-Stokes-Robinson (ZSR) model proposed by Clegg and Seinfeld (J. Phys. Chem. A 2004, 108, 1008-1017) for calculating water and solute activities in solutions in which dissociation equilibria occur. The ZSR model yields satisfactory results only for systems that contain moderate to high concentrations of (nondissociating) supporting electrolyte. A practical modeling scheme is proposed for aqueous atmospheric aerosols containing both electrolytes and dissociating (organic) nonelectrolytes.
引用
收藏
页码:5718 / 5734
页数:17
相关论文
共 92 条
[1]  
Adell B, 1939, Z PHYS CHEM A-CHEM T, V185, P161
[2]   THERMODYNAMIC PROPERTIES OF THE NACL+H2O SYSTEM .2. THERMODYNAMIC PROPERTIES OF NACL(AQ), NACL.2H2O(CR), AND PHASE-EQUILIBRIA [J].
ARCHER, DG .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1992, 21 (04) :793-829
[3]   ACIDITY FUNCTIONS - VALUES OF QUANTITY P(ALPHAHGAMMACL) FOR BUFFER SOLUTIONS FROM 0 TO 95 DEGREES C [J].
BATES, RG ;
GARY, R .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1961, A 65 (06) :495-+
[4]   ACIDIC DISSOCIATION CONSTANT OF AMMONIUM ION AT 0-DEGREES TO 50-DEGREES-C, AND THE BASE STRENGTH OF AMMONIA [J].
BATES, RG ;
PINCHING, GD .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1949, 42 (05) :419-430
[5]   A study of the phase transition behavior of internally mixed ammonium sulfate-malonic acid aerosols [J].
Braban, CF ;
Abbatt, JPD .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2004, 4 :1451-1459
[6]   Deliquescence behavior of organic/ammonium sulfate aerosol [J].
Brooks, SD ;
Wise, ME ;
Cushing, M ;
Tolbert, MA .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (19) :23-1
[7]  
CARLO MJ, 1971, THESIS TEXAS A M U C
[8]   CRYSTAL-STRUCTURE OF AMMONIUM HYDROGEN MALONATE [J].
CHAPUIS, G ;
ZALKIN, A ;
TEMPLETON, DH .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (12) :4919-4922
[9]   The effects of organic species on the hygroscopic behaviors of inorganic aerosols [J].
Choi, MY ;
Chan, CK .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (11) :2422-2428
[10]   A CHEMICAL-MODEL OF SEAWATER INCLUDING DISSOLVED AMMONIA AND THE STOICHIOMETRIC DISSOCIATION-CONSTANT OF AMMONIA IN ESTUARINE WATER AND SEAWATER FROM -2-DEGREES-C TO 40-DEGREES-C [J].
CLEGG, SL ;
WHITFIELD, M .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1995, 59 (12) :2403-2421