dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants

被引:112
作者
Fukunaga, Ryuya
Doudna, Jennifer A. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA
关键词
dsRNA-binding; overhang; plant; RNA silencing; viral suppressor; TRANS-ACTING SIRNAS; SMALL INTERFERING RNA; COILED COILS; ARABIDOPSIS; PROTEIN; SUPPRESSOR; SGS3; BIOGENESIS; RECOGNITION; METHYLATION;
D O I
10.1038/emboj.2009.2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In plants, SGS3 and RNA-dependent RNA polymerase 6 (RDR6) are required to convert single-to double-stranded RNA (dsRNA) in the innate RNAi-based antiviral response and to produce both exogenous and endogenous short-interfering RNAs. Although a role for RDR6-catalysed RNA-dependent RNA polymerisation in these processes seems clear, the function of SGS3 is unknown. Here, we show that SGS3 is a dsRNA-binding protein with unexpected substrate selectivity favouring 5'-overhang-containing dsRNA. The conserved XS and coiled-coil domains are responsible for RNA-binding activity. Furthermore, we find that the V2 protein from tomato yellow leaf curl virus, which suppresses the RNAi-based host immune response, is a dsRNA-binding protein with similar specificity to SGS3. In competition-binding experiments, V2 out-competes SGS3 for substrate dsRNA recognition, whereas a V2 point mutant lacking the suppressor function in vivo cannot efficiently overcome SGS3 binding. These findings suggest that SGS3 recognition of dsRNA containing a 5' overhang is required for subsequent steps in RNA-mediated gene silencing in plants, and that V2 functions as a viral suppressor by preventing SGS3 from accessing substrate RNAs.
引用
收藏
页码:545 / 555
页数:11
相关论文
共 30 条
[1]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[2]   The SGS3 protein involved in PTGS finds a family [J].
Bateman, A .
BMC BIOINFORMATICS, 2002, 3 (1)
[3]   A branched pathway for transgene-induced RNA silencing in plants [J].
Béclin, C ;
Boutet, S ;
Waterhouse, P ;
Vaucheret, H .
CURRENT BIOLOGY, 2002, 12 (08) :684-688
[4]   Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis [J].
Borsani, O ;
Zhu, JH ;
Verslues, PE ;
Sunkar, R ;
Zhu, JK .
CELL, 2005, 123 (07) :1279-1291
[5]   Coiled coils: a highly versatile protein folding motif [J].
Burkhard, P ;
Stetefeld, J ;
Strelkov, SV .
TRENDS IN CELL BIOLOGY, 2001, 11 (02) :82-88
[6]   Dual modes of RNA-silencing suppression by flock house virus protein B2 [J].
Chao, JA ;
Lee, JH ;
Chapados, BR ;
Debler, EW ;
Schneemann, A ;
Williamson, JR .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (11) :952-957
[7]   Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step [J].
Chapman, EJ ;
Prokhnevsky, AI ;
Gopinath, K ;
Dolja, VV ;
Carrington, JC .
GENES & DEVELOPMENT, 2004, 18 (10) :1179-1186
[8]   Biochemical activities of Arabidopsis RNA-dependent RNA polymerase 6 [J].
Curaba, Julien ;
Chen, Xuemei .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (06) :3059-3066
[9]   Antiviral immunity directed by small RNAs [J].
Ding, Shou-Wei ;
Voinnet, Olivier .
CELL, 2007, 130 (03) :413-426
[10]   Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs [J].
Gasciolli, V ;
Mallory, AC ;
Bartel, DP ;
Vaucheret, H .
CURRENT BIOLOGY, 2005, 15 (16) :1494-1500