Two new single-nucleotide polymorphisms in the COL1A1 upstream regulatory region and their relationship to bone mineral density

被引:85
作者
Garcia-Giralt, N
Nogués, X
Enjuanes, A
Puig, J
Mellibovsky, L
Bay-Jensen, A
Carreras, R
Balcells, S
Díez-Pérez, A
Grinberg, D
机构
[1] Univ Barcelona, Dept Genet, E-08028 Barcelona, Spain
[2] Univ Autonoma Barcelona, Hosp Mar, URFOA, IMIM, Barcelona, Spain
关键词
osteoporosis; bone mineral density; COL1A1; gene; single-nucleotide polymorphisms; promoter;
D O I
10.1359/jbmr.2002.17.3.384
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Single-nucleotide polymorphisms (SNPs) in regulatory regions of candidate genes may determine variability, in bone mineral density (BMD) because they may be responsible for differences in levels of a gene product in response to external signals. Under this hypothesis, we scanned an 800-base pair (bp) region within the COLIA1 promoter, known to harbor cis elements important for in vivo expression, and we found two new polymorphisms: - 1663indelT and - 1997 G/T. The G to T transversion at - 1997 was associated with lumbar spine BMD (p = 0.015) when tested in a cohort of 256 postmenopausal women after adjusting by age, body weight, and years since menopause; a lower degree of association was detected also for femoral neck BMD in a subgroup of 146 women in univariate analysis and after adjusting by age (p = 0.044). The polymorphism - 1663indelT, which corresponds to a deletion of a T in a tract of eight T residues (- 1670 to - 1663), did not show significant association with BMD. Interestingly, -1663indelT is in strong linkage disequilibrium (LD) with the previously described Sp1 polymorphism of intron 1, which in this study did not show association with BMD either. Significant interaction between -1997 G/T and -1663indelT (P = 0.019), and between -1997 G/T and Sp1 (p = 0.045) was observed also. Individuals heterozygous for the three polymorphisms showed the highest mean BMD value. Gel retardation assays showed that oligonucleotides containing either the - 1663 or the -1997 polymorphic sites specifically bind primary, osteoblast nuclear proteins. We named these binding sites as PCOL1 and PCOL2, respectively. In summary, this study, describes two new SNPs in the COL1A1 promoter, which may affect bone mass determination.
引用
收藏
页码:384 / 393
页数:10
相关论文
共 49 条
[1]   Vitamin D receptor alleles do not correlate with bone mineral density in premenopausal Caucasian women from the southeastern United States [J].
Alahari, KD ;
Lobaugh, B ;
Econs, MJ .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1997, 46 (02) :224-226
[2]  
Alvarez M, 1998, J CELL BIOCHEM, V69, P336, DOI 10.1002/(SICI)1097-4644(19980601)69:3<336::AID-JCB11>3.0.CO
[3]  
2-A
[4]   No major effect of estrogen receptor gene polymorphisms on bone mineral density or bone loss in postmenopausal Danish women [J].
Bagger, YZ ;
Jorgensen, HL ;
Heegaard, AM ;
Bayer, L ;
Hansen, L ;
Hassager, C .
BONE, 2000, 26 (02) :111-116
[5]   Cloning and characterization of a novel sequence-specific single-stranded-DNA-binding protein [J].
Bayarsaihan, D ;
Soto, RJ ;
Lukens, LN .
BIOCHEMICAL JOURNAL, 1998, 331 :447-452
[6]   MEASURING THE STRENGTH OF ASSOCIATIONS BETWEEN HLA ANTIGENS AND DISEASES [J].
BENGTSSON, BO ;
THOMSON, G .
TISSUE ANTIGENS, 1981, 18 (05) :356-363
[7]   Fracture rate, pre- and postmenopausal bone mass and early and late postmenopausal bone loss are not associated with vitamin D receptor genotype in a high-endemic area of osteoporosis [J].
Berg, JP ;
Falch, JA ;
Haug, E .
EUROPEAN JOURNAL OF ENDOCRINOLOGY, 1996, 135 (01) :96-100
[8]  
BOGDANOVIC Z, 1994, J BONE MINER RES, V9, P285
[9]  
CHRISTIAN JC, 1989, AM J HUM GENET, V44, P429
[10]  
Cooper D, 1995, METABOLIC MOL BASES, P259