Two novel holographic recording media based on silica gel methyl methacrylate (MMA) and hydroxy ethyl methacrylate (HEMA) organically modified ceramics (ORMOCERS) are presented and its holographic properties, inferred from the experimental data, are discussed. The recording of holographic gratings of both low-spatial frequency (50 1p/mm) and high-spatial frequency (1400 1p/mm) in a bulk ORMOCER matrix is reported. The gratings were recorded by UV irradiation-induced photopolymerization of the MMA or HEMA monomers embedded in the silica matrix. The Bragg gratings were successfully recorded by interference of two coherent beams of 351.1 nm wavelength. A linearly polarized He-Ne laser beam (632.8 Ma) was used for continuous monitoring of the recording process by measurement of the diffraction efficiency and for enhancement of the grating creation process. High diffraction efficiencies (93%) and low absorption and scattering coefficients were measured during the holographic reconstruction by He-Ne laser beam. The most important holographic parameters of the gratings were inferred from the experimental data: diffraction efficiency, angular selectivity, refraction-index modulation amplitude, spectral sensitivity, the Klein-Cook parameter, and the environmental stability of the gratings.