RNA simulations: Probing hairpin unfolding and the dynamics of a GNRA tetraloop

被引:95
作者
Sorin, EJ
Engelhardt, MA
Herschlag, D
Pande, VS [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biophys, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Biol Struct, Stanford, CA 94305 USA
[5] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA
关键词
RNA folding; GCAA; implicit solvent; stochastic dynamics; sugar pucker;
D O I
10.1006/jmbi.2002.5447
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Simulations of an RNA hairpin containing a GNRA tetraloop were conducted to allow the characterization of its secondary structure formation and dynamics. Ten 10 ns trajectories of the folded hairpin 5'-GGGC[GCAA]GCCU-3' were generated using stochastic dynamics and the GB/SA implicit solvent model at 300 K. Overall, we find the stem to be a very stable subunit of this molecule, whereas multiple loop conformations and transitions between them were observed. These trajectories strongly suggest that extension of the C6 base away from the loop occurs cooperatively with an N-type --> S-type sugar pucker conversion in that residue and that similar pucker transitions are necessary to stabilize other looped-out bases. In addition, a short-lived conformer with an extended fourth loop residue (M) lacking this stabilizing 2'-endo pucker mode was observed. Results of thermal perturbation at 400 K support this model of loop dynamics. Unfolding trajectories were produced using this same methodology at temperatures of 500 to 700 K. The observed unfolding events display three-state behavior kinetically (including native, globular, and unfolded populations) and, based on these observations, we propose a folding mechanism that consists of three distinct events: (i) collapse of the random unfolded structure and sampling of the globular state; (ii) passage into the folded region of configurational space as stem base-pairs form and gain helicity; and (iii) attainment of proper loop geometry and organization of loop pairing and stacking interactions. These results are considered in the context of current experimental knowledge of this and similar nucleic acid hairpins. (C) 2002 Elsevier Science Ltd.
引用
收藏
页码:493 / 506
页数:14
相关论文
共 52 条
[1]   BROWNIAN DYNAMICS SIMULATION OF A CHEMICAL-REACTION IN SOLUTION [J].
ALLEN, MP .
MOLECULAR PHYSICS, 1980, 40 (05) :1073-1087
[3]   Configurational diffusion down a folding funnel describes the dynamics of DNA hairpins [J].
Ansari, A ;
Kuznetsov, SV ;
Shen, YQ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (14) :7771-7776
[4]   Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes [J].
Auffinger, P ;
Westhof, E .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 292 (03) :467-483
[5]   Simulations of the molecular dynamics of nucleic acids [J].
Auffinger, P ;
Westhof, E .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (02) :227-236
[6]   Rules governing the orientation of the 2'-hydroxyl group in RNA [J].
Auffinger, P ;
Westhof, E .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 274 (01) :54-63
[7]   Hierarchy and dynamics of RNA folding [J].
Brion, P ;
Westhof, E .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1997, 26 :113-137
[8]   Simulations of protein folding and unfolding [J].
Brooks, CL .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (02) :222-226
[9]   DEFORMABLE STOCHASTIC BOUNDARIES IN MOLECULAR-DYNAMICS [J].
BROOKS, CL ;
KARPLUS, M .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (12) :6312-6325
[10]   STOCHASTIC BOUNDARY-CONDITIONS FOR MOLECULAR-DYNAMICS SIMULATIONS OF ST2 WATER [J].
BRUNGER, A ;
BROOKS, CL ;
KARPLUS, M .
CHEMICAL PHYSICS LETTERS, 1984, 105 (05) :495-500