Development of one-dimensional nanostructures through the crystallization of amorphous colloids

被引:34
作者
Cao, XB
Li, LY
Yi, X [1 ]
机构
[1] Univ Sci & Technol China, Struct Res Lab, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui, Peoples R China
关键词
crystallization; amorphous colloid; one-dimensional nanostructures; bismuth sulfide; selenium;
D O I
10.1016/j.jcis.2003.12.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper we have demonstrated that the crystallization method of amorphous colloids is convenient and feasible in the large-scale production of one-dimensional (1D) nanostructures. For the crystals with highly anisotropic structures, such as orthorhombic, trigonal, and hexagonal crystals, the crystallization generally tends to occur along the (001) axis. The preparation of orthorhombic bismuth sulfide (Bi2S3) nanorods and trigonal selenium (t-Se) nanowires by the crystallization route was used as typical examples to illustrate the process and mechanism of crystallization. The as-prepared products were characterized with transmission electron microscopy, field-emission scanning electron microscopy, X-ray diffraction, and selected area electron diffraction. Additionally, the detailed crystal growth processes involved in the crystallization of amorphous Bi2O3 colloid were investigated by studying the morphology and structure of intermediates. It demonstrates that the growth of the nanorods is through two key steps: (1) the formation of multiple activated sites on the surface of spherical Bi2O3 colloid and (2) the subsequent preferential growth along these sites. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 35 条
[1]   RESEARCH OPPORTUNITIES ON CLUSTERS AND CLUSTER-ASSEMBLED MATERIALS - A DEPARTMENT OF ENERGY, COUNCIL ON MATERIALS SCIENCE PANEL REPORT [J].
ANDRES, RP ;
AVERBACK, RS ;
BROWN, WL ;
BRUS, LE ;
GODDARD, WA ;
KALDOR, A ;
LOUIE, SG ;
MOSCOVITS, M ;
PEERCY, PS ;
RILEY, SJ ;
SIEGEL, RW ;
SPAEPEN, F ;
WANG, Y .
JOURNAL OF MATERIALS RESEARCH, 1989, 4 (03) :704-736
[2]   THE QUANTUM-MECHANICS OF LARGER SEMICONDUCTOR CLUSTERS (QUANTUM DOTS) [J].
BAWENDI, MG ;
STEIGERWALD, ML ;
BRUS, LE .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1990, 41 :477-496
[3]   NANOCRYSTALLINE MATERIALS [J].
BIRRINGER, R .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1989, 117 :33-43
[4]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[5]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[6]  
Gates B, 2002, ADV MATER, V14, P1749, DOI 10.1002/1521-4095(20021203)14:23<1749::AID-ADMA1749>3.0.CO
[7]  
2-Z
[8]  
Gates B, 2002, ADV FUNCT MATER, V12, P219, DOI 10.1002/1616-3028(200203)12:3<219::AID-ADFM219>3.0.CO
[9]  
2-U
[10]   A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm [J].
Gates, B ;
Yin, YD ;
Xia, YN .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (50) :12582-12583