A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo

被引:74
作者
Duan, YY [1 ]
Clark, GM [1 ]
Cowan, RSC [1 ]
机构
[1] Cooperat Res Ctr Cochlear Implant & Hearing Aid I, Bion Ear Inst, Melbourne, Vic 3002, Australia
关键词
electrode-tissue interfaces; intra-cochlear electrodes; electrochemical impedance methods; implantable device; biomedical materials; neural prostheses;
D O I
10.1016/j.biomaterials.2003.09.107
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents methods, results and analysis for measurements of the electrochemical impedance of platinum electrodes (similar to0.43 mm(2)) over a 6-month implantation in the cat cochlea. The study aimed to improve our understanding of the effects of tissue response on impedance behaviour. An increase in impedance in the post-operative period was evident with a rise of the distorted arc at high frequencies in the complex plane, correlating to anomalous charge transport at the electrode-tissue interface. The impedance at low frequencies generally showed a capacitive dispersion modelled as a constant phase element, indicating a blocking characteristic of the electrodes. The study suggests that a reduction and changes in composition of perilymph or extracellular fluid adjacent to the electrodes, as a consequence of tissue response, causes the elevated "contact impedance". This affects the efficiency and quality of neural stimulating electrodes and neural recording electrodes. The finding of the crucial role of perilymph or extracellular fluid thin layer provides a new strategy for surface materials of neural electrodes, which is discussed in the paper. The interface characteristics must be considered during interpretation of studies undertaken in vitro or in acute experiments in vivo, where physiological fluid is abundant. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3813 / 3828
页数:16
相关论文
共 39 条
[1]   Application of the impedance model of de Levie for the characterization of porous electrodes [J].
Barcia, OE ;
D'Elia, E ;
Frateur, I ;
Mattos, OR ;
Pébère, N ;
Tribollet, B .
ELECTROCHIMICA ACTA, 2002, 47 (13-14) :2109-2116
[2]  
Bisquert J, 2002, J PHYS CHEM B, V106, P325, DOI [10.1021/jp011941g, 10.1021/jp01194lg]
[3]   Impedance of constant phase element (CPE)-blocked diffusion in film electrodes [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Bueno, P ;
Longo, E ;
Bulhoes, LOS .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1998, 452 (02) :229-234
[4]   Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Fabregat-Santiago, F ;
Bueno, PR .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 475 (02) :152-163
[5]   Analysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processes [J].
Bisquert, J ;
Vikhrenko, VS .
ELECTROCHIMICA ACTA, 2002, 47 (24) :3977-3988
[6]   Theory of the electrochemical impedance of anomalous diffusion [J].
Bisquert, J ;
Compte, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 499 (01) :112-120
[7]   Influence of the boundaries in the impedance of porous film electrodes [J].
Bisquert, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (18) :4185-4192
[8]   Anomalous transport effects in the impedance of porous film electrodes [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Fabregat-Santiago, F ;
Compte, A .
ELECTROCHEMISTRY COMMUNICATIONS, 1999, 1 (09) :429-435
[9]   Doubling exponent models for the analysis of porous film electrodes by impedance.: Relaxation of TiO2 nanoporous in aqueous solution [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Fabregat-Santiago, F ;
Ferriols, NS ;
Bogdanoff, P ;
Pereira, EC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (10) :2287-2298
[10]   Application of a distributed impedance model in the analysis of conducting polymer films [J].
Bisquert, J ;
Belmonte, GG ;
Santiago, FF ;
Ferriols, NS ;
Yamashita, M ;
Pereira, EC .
ELECTROCHEMISTRY COMMUNICATIONS, 2000, 2 (08) :601-605