Neuronal networks for induced '40 Hz' rhythms

被引:409
作者
Jefferys, JGR
Traub, RD
Whittington, MA
机构
[1] UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED,ST MARYS HOSP,SCH MED,DEPT PHYSIOL & BIOPHYS,LONDON W2 1PG,ENGLAND
[2] IBM CORP,THOMAS J WATSON RES CTR,DIV RES,YORKTOWN HTS,NY 10598
[3] COLUMBIA UNIV,DEPT NEUROL,NEW YORK,NY 10032
基金
英国惠康基金;
关键词
D O I
10.1016/S0166-2236(96)10023-0
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A fast, coherent EEG rhythm, called a gamma or a '40 Hz' rhythm, has been implicated both in higher brain functions, such as the 'binding' of features that are detected by sensory cortices into perceived objects, and in lower level processes, such as the phase coding of neuronal activity. Computer simulations of several parts of the brain suggest that gamma rhythms can be generated by pools of excitatory neurones, networks of inhibitory neurones, or networks of both excitatory and inhibitory neurones. The strongest experimental evidence for rhythm generators has been shown for: (I) neocortical and thalamic neurones that are intrinsic '40 Hz' oscillators, although synchrony still requires network mechanisms; and (2) hippocampal and neocortical networks of mutually inhibitory interneurones that generate collective 40 Hz rhythms when excited tonically.
引用
收藏
页码:202 / 208
页数:7
相关论文
共 54 条
[1]   THE ELECTRICAL ACTIVITY OF THE MAMMALIAN OLFACTORY BULB [J].
ADRIAN, ED .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1950, 2 (04) :377-388
[2]   ANATOMICAL LOCALIZATION OF CORTICAL BETA-RHYTHMS IN CAT [J].
BOUYER, JJ ;
MONTARON, MF ;
VAHNEE, JM ;
ALBERT, MP ;
ROUGEUL, A .
NEUROSCIENCE, 1987, 22 (03) :863-869
[3]  
BRAGIN A, 1995, J NEUROSCI, V15, P47
[4]   DIVERSE SOURCES OF HIPPOCAMPAL UNITARY INHIBITORY POSTSYNAPTIC POTENTIALS AND THE NUMBER OF SYNAPTIC RELEASE SITES [J].
BUHL, EH ;
HALASY, K ;
SOMOGYI, P .
NATURE, 1994, 368 (6474) :823-828
[5]   A MODEL OF SPINDLE RHYTHMICITY IN THE ISOLATED THALAMIC RETICULAR NUCLEUS [J].
DESTEXHE, A ;
CONTRERAS, D ;
SEJNOWSKI, TJ ;
STERIADE, M .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 72 (02) :803-818
[6]   CORRELATIONS BETWEEN UNIT FIRING AND EEG IN THE RAT OLFACTORY SYSTEM [J].
EECKMAN, FH ;
FREEMAN, WJ .
BRAIN RESEARCH, 1990, 528 (02) :238-244
[7]  
ENGEL A K, 1992, Current Biology, V2, P332, DOI 10.1016/0960-9822(92)90898-K
[8]   TEMPORAL CODING IN THE VISUAL-CORTEX - NEW VISTAS ON INTEGRATION IN THE NERVOUS-SYSTEM [J].
ENGEL, AK ;
KONIG, P ;
KREITER, AK ;
SCHILLEN, TB ;
SINGER, W .
TRENDS IN NEUROSCIENCES, 1992, 15 (06) :218-226
[9]   INTERHEMISPHERIC SYNCHRONIZATION OF OSCILLATORY NEURONAL RESPONSES IN CAT VISUAL-CORTEX [J].
ENGEL, AK ;
KONIG, P ;
KREITER, AK ;
SINGER, W .
SCIENCE, 1991, 252 (5009) :1177-1179
[10]   DIRECT PHYSIOLOGICAL EVIDENCE FOR SCENE SEGMENTATION BY TEMPORAL CODING [J].
ENGEL, AK ;
KONIG, P ;
SINGER, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (20) :9136-9140