Enhanced trichloroethene desorption from long term contaminated soil using Triton X-100 and pH increases

被引:40
作者
Sahoo, D [1 ]
Smith, JA [1 ]
机构
[1] UNIV VIRGINIA, DEPT CIVIL ENGN, PROGRAM INTERDISCIPLINARY RES CONTAMINANT HYDROGE, CHARLOTTESVILLE, VA 22903 USA
关键词
D O I
10.1021/es960655t
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Laboratory batch and column experiments were conducted to study the effect of relatively low concentrations of Triton X-100 and pH increases on trichloroethene (TCE) desorption from field-contaminated soil to water. TCE desorption from the contaminated soil could not be described by a model that assumes a localized equilibrium between the aqueous- and sorbed-phase concentrations of TCE. A kinetic desorption model, the multi-site model with a gamma-distribution of rate constants, was used to interpret the data and to determine the mass-transfer coefficients. In both batch and column experiments, the multi-site model performed well in simulating TCE desorption. In laboratory batch and column experiments, the addition of Triton X-100 (at concentrations close to critical micelle concentration) to the soil-water system increased the rate of TCE desorption from the soil at early times, although only by a small amount. Similar results were obtained by increasing the solution pH from 7 to 10. In experiments with Triton X-100, the mean mass-transfer coefficient increased by 11.2% in batch tests and 16.5% in column tests relative to experiments without Triton X-100. The mean mass-transfer coefficient increase caused by increasing pH from 7 to 10 was 53% in batch tests and 7% in column tests.
引用
收藏
页码:1910 / 1915
页数:6
相关论文
共 35 条
[1]   LONG-TERM SORPTION OF HALOGENATED ORGANIC-CHEMICALS BY AQUIFER MATERIAL .1. EQUILIBRIUM [J].
BALL, WP ;
ROBERTS, PV .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1991, 25 (07) :1223-1237
[2]   SORPTION NONIDEALITY DURING ORGANIC CONTAMINANT TRANSPORT IN POROUS-MEDIA [J].
BRUSSEAU, ML ;
RAO, PSC .
CRITICAL REVIEWS IN ENVIRONMENTAL CONTROL, 1989, 19 (01) :33-99
[4]   APPLICATION OF A PERMEANT POLYMER DIFFUSIONAL MODEL TO THE DESORPTION OF POLYCHLORINATED-BIPHENYLS FROM HUDSON RIVER SEDIMENTS [J].
CARROLL, KM ;
HARKNESS, MR ;
BRACCO, AA ;
BALCARCEL, RR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (02) :253-258
[5]   BINDING OF DDT TO DISSOLVED HUMIC MATERIALS [J].
CARTER, CW ;
SUFFET, IH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1982, 16 (11) :735-740
[6]  
Cesare D. di, 1994, Reviews of Environmental Contamination and Toxicology, V134, P1
[7]   PHYSICAL CONCEPT OF SOIL-WATER EQUILIBRIA FOR NON-IONIC ORGANIC-COMPOUNDS [J].
CHIOU, CT ;
PETERS, LJ ;
FREED, VH .
SCIENCE, 1979, 206 (4420) :831-832
[8]   DESCRIPTION OF TIME-VARYING DESORPTION-KINETICS - RELEASE OF NAPHTHALENE FROM CONTAMINATED SOILS [J].
CONNAUGHTON, DF ;
STEDINGER, JR ;
LION, LW ;
SHULER, ML .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1993, 27 (12) :2397-2403
[9]   Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates [J].
Culver, TB ;
Hallisey, SP ;
Sahoo, D ;
Deitsch, JJ ;
Smith, JA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (06) :1581-1588
[10]  
Cussler E.L., 1984, DIFFUSION, P525