Reduction algorithm for the NPMLE for the distribution function of bivariate interval-censored data

被引:30
作者
Maathuis, MH [1 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
computational geometry; maximal clique; maximal intersection; parameter reduction;
D O I
10.1198/106186005X48470
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers computational aspects of the nonparametric maximum likelihood estimator (NPMLE) for the distribution function of bivariate interval-censored data. The computation of the NPMLE consists of a parameter reduction step and an optimization step. This article focuses on the reduction step and introduces two new reduction algorithms: the Tree algorithm and the HeightMap algorithm. The Tree algorithm is mentioned only briefly. The HeightMap algorithm is discussed in detail and also given in pseudo code. It is a fast and simple algorithm of time complexity O(n(2)). This is an order faster than the best known algorithm thus far by Bogaerts and Lesaffre. We compare the new algorithms to earlier algorithms in a simulation study, and demonstrate that the new algorithms are significantly faster. Finally, we discuss how the HeightMap algorithm can be generalized to d-dimensional data with d > 2. Such a multivariate version of the HeightMap algorithm has time complexity O(n(d)).
引用
收藏
页码:352 / 362
页数:11
相关论文
共 12 条
[1]  
[Anonymous], ADV COMPUTING RES
[2]  
[Anonymous], 2001, THESIS U WASHINGTON
[3]  
Betensky RA, 1999, STAT MED, V18, P3089, DOI 10.1002/(SICI)1097-0258(19991130)18:22<3089::AID-SIM191>3.0.CO
[4]  
2-0
[5]   A new, fast algorithm to find the regions of possible support for bivariate interval-censored data [J].
Bogaerts, K ;
Lesaffre, E .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (02) :330-340
[6]   Nonparametric estimation of the bivariate CDF for arbitrarily censored data [J].
Gentleman, R ;
Vandal, AC .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (04) :557-571
[7]   Computational algorithms for censored-data problems using intersection graphs [J].
Gentleman, R ;
Vandal, AC .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2001, 10 (03) :403-421
[8]  
GENTLEMAN R, 1994, BIOMETRIKA, V81, P618
[9]  
Groeneboom P., 1992, INFORM BOUNDS NONPAR
[10]  
TURNBULL BW, 1976, J R STAT SOC B, V38, P290