Solving the quantum many-body problem with artificial neural networks

被引:1639
作者
Carleo, Giuseppe [1 ]
Troyer, Matthias [1 ,2 ]
机构
[1] ETH, Theoret Phys, CH-8093 Zurich, Switzerland
[2] Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
MATRIX RENORMALIZATION-GROUP; PRODUCT STATES; GROUND-STATE; DYNAMICS; SYSTEMS;
D O I
10.1126/science.aag2302
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The challenge posed by the many-body problem in quantum physics originates from the difficulty of describing the nontrivial correlations encoded in the exponential complexity of the many-body wave function. Here we demonstrate that systematic machine learning of the wave function can reduce this complexity to a tractable computational form for some notable cases of physical interest. We introduce a variational representation of quantum states based on artificial neural networks with a variable number of hidden neurons. A reinforcement-learning scheme we demonstrate is capable of both finding the ground state and describing the unitary time evolution of complex interacting quantum systems. Our approach achieves high accuracy in describing prototypical interacting spins models in one and two dimensions.
引用
收藏
页码:602 / 605
页数:4
相关论文
共 40 条
[1]  
[Anonymous], 2012, ICML
[2]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[3]   Light-cone effect and supersonic correlations in one-and two-dimensional bosonic superfluids [J].
Carleo, Giuseppe ;
Becca, Federico ;
Sanchez-Palencia, Laurent ;
Sorella, Sandro ;
Fabrizio, Michele .
PHYSICAL REVIEW A, 2014, 89 (03)
[4]   Localization and Glassy Dynamics Of Many-Body Quantum Systems [J].
Carleo, Giuseppe ;
Becca, Federico ;
Schiro, Marco ;
Fabrizio, Michele .
SCIENTIFIC REPORTS, 2012, 2
[5]   Quantum Monte Carlo methods for nuclear physics [J].
Carlson, J. ;
Gandolfi, S. ;
Pederiva, F. ;
Pieper, Steven C. ;
Schiavilla, R. ;
Schmidt, K. E. ;
Wiringa, R. B. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (03) :1067-1118
[6]   QUANTUM MONTE-CARLO [J].
CEPERLEY, D ;
ALDER, B .
SCIENCE, 1986, 231 (4738) :555-560
[7]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[8]  
Dirac PAM, 1930, P CAMB PHILOS SOC, V26, P376
[9]   Matrix product state applications for the ALPS project [J].
Dolfi, Michele ;
Bauer, Bela ;
Keller, Sebastian ;
Kosenkov, Alexandr ;
Ewart, Timothee ;
Kantian, Adrian ;
Giamarchi, Thierry ;
Troyer, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (12) :3430-3440
[10]  
Eisert J, 2015, NAT PHYS, V11, P124, DOI [10.1038/nphys3215, 10.1038/NPHYS3215]