A comparative study of sparse approximate inverse preconditioners

被引:188
作者
Benzi, M
Tuma, M
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Acad Sci Czech Republ, Inst Comp Sci, Prague 18207 8, Czech Republic
关键词
sparse linear systems; sparse matrices; preconditioned Krylov subspace methods; incomplete factorizations; factorized approximate inverses; SPAI; FSAI; incomplete biconjugation;
D O I
10.1016/S0168-9274(98)00118-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A number of recently proposed preconditioning techniques based on sparse approximate inverses are considered. A description of the preconditioners is given, and the results of an experimental comparison performed on one processor of a Gray C98 vector computer using sparse matrices from a variety of applications are presented. A comparison with more standard preconditioning techniques, such as incomplete factorizations, is also included. Robustness, convergence rates, and implementation issues are discussed, (C) 1999 Elsevier Science B.V. and IMACS. All rights reserved.
引用
收藏
页码:305 / 340
页数:36
相关论文
共 82 条
[1]   Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics [J].
Alleon, G ;
Benzi, M ;
Giraud, L .
NUMERICAL ALGORITHMS, 1997, 16 (01) :1-15
[2]  
Alvarado F., 1992, P 1992 COPP MOUNT C, VI
[3]  
Anderson E., 1992, LAPACK User's Guide
[4]  
[Anonymous], 1995, SURVEY PRECONDITIONE
[5]  
AXELSSON O, 1985, BIT, V25, P166
[6]   Diagonally Compensated Reduction and Related Preconditioning Methods [J].
Axelsson, O. ;
Kolotilina, L. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1994, 1 (02) :155-177
[7]  
Axelsson O., 1994, ITERATIVE SOLUTION M
[8]  
BARNARD ST, 1997, LBNL40794
[9]  
BARNARD ST, 1997, P 8 SIAM C PAR PROC
[10]  
Barrett R., 1994, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, V2nd ed.