Approaches to quantifying and visualizing polyelectrolyte multilayer film formation on particles

被引:47
作者
Johnston, Angus P. R. [1 ]
Zelikin, Alexander N. [1 ]
Lee, Lillian [1 ]
Caruso, Frank [1 ]
机构
[1] Univ Melbourne, Dept Chem & Biomol Engn, Ctr Nanosci & Nanotechnol, Parkville, Vic 3010, Australia
关键词
D O I
10.1021/ac060765a
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Colloidal particles prepared by using the layer-by-layer technique are increasingly finding application in diagnostics, drug delivery, and sensing. Herein, we outline methods for applying three established techniques, confocal laser scanning microscopy (CLSM), flow cytometry, and differential interference contrast (DIC) microscopy, to characterize ultrathin films of poly(styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) assembled on silica particles. Both CLSM and flow cytometry require the use of fluorescently labeled polyelectrolytes (PEs). The film homogeneity can be assessed using CLSM, while flow cytometry allows analysis at unparalleled speed (thousands of particles per second) with unprecedented sensitivity (<0.5 fg of adsorbed polymer) of polydispersed particles of different size (similar to 300 nm to tens of micrometers). Using CLSM and flow cytometry measurements, in conjunction with quartz crystal microgravimetry measurements on planar supports, allows quantification of PSS/PAH layer buildup on the particles. Furthermore, flow cytometry and DIC microscopy were used to unequivocally distinguish between silica-core PSS/PAH-shell particles and hollow PSS/PAH capsules obtained following core removal. The techniques outlined here are not limited to measuring PE deposition on solid particles but, in principle, are equally applicable to quantifying the adsorption of other materials (such as DNA, proteins, or nanoparticles) on a variety of particulate systems, including hollow capsules, emulsions, and cells.
引用
收藏
页码:5913 / 5919
页数:7
相关论文
共 33 条
[1]   Bioinspired colloidal systems via layer-by-layer assembly [J].
Angelatos, AS ;
Katagiri, K ;
Caruso, F .
SOFT MATTER, 2006, 2 (01) :18-23
[2]   Interactions between silica surfaces coated by polyelectrolyte multilayers in aqueous environment: comparison between precursor and multilayer regime [J].
Bosio, V ;
Dubreuil, F ;
Bogdanovic, G ;
Fery, A .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2004, 243 (1-3) :147-155
[3]  
Caruso F, 2001, ADV MATER, V13, P11, DOI 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO
[4]  
2-N
[5]   Fluorescence studies of the binding of anionic derivatives of pyrene and fluorescein to cationic polyelectrolytes in aqueous solution [J].
Caruso, F ;
Donath, E ;
Mohwald, H ;
Georgieva, R .
MACROMOLECULES, 1998, 31 (21) :7365-7377
[6]   Ultrathin multilayer polyelectrolyte films on gold: Construction and thickness determination .1. [J].
Caruso, F ;
Niikura, K ;
Furlong, DN ;
Okahata, Y .
LANGMUIR, 1997, 13 (13) :3422-3426
[7]   Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
SCIENCE, 1998, 282 (5391) :1111-1114
[8]  
CARUSO F, 2003, COLLOIDS COLLOID ASS
[9]   Influence of the degree of ionization on weak polyelectrolyte multilayer assembly [J].
Choi, J ;
Rubner, MF .
MACROMOLECULES, 2005, 38 (01) :116-124
[10]   BUILDUP OF ULTRATHIN MULTILAYER FILMS BY A SELF-ASSEMBLY PROCESS .2. CONSECUTIVE ADSORPTION OF ANIONIC AND CATIONIC BIPOLAR AMPHIPHILES AND POLYELECTROLYTES ON CHARGED SURFACES [J].
DECHER, G ;
HONG, JD .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1991, 95 (11) :1430-1434