A Novel Thermoformable Bionanocomposite Based on Cellulose Nanocrystal-graft-Poly(ε-caprolactone)

被引:68
作者
Chen, Guangjun [1 ,2 ,3 ]
Dufresne, Alain [4 ]
Huang, Jin [1 ,2 ,3 ,4 ]
Chang, Peter R. [5 ,6 ]
机构
[1] Wuhan Univ Technol, Coll Chem Engn, Wuhan 430070, Peoples R China
[2] S China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Peoples R China
[3] Chinese Acad Sci, Guangzhou Inst Chem, Key Lab Cellulose & Lignocellulos Chem, Guangzhou 510650, Guangdong, Peoples R China
[4] Inst Natl Polytech Grenoble, Ecole Francaise Papeterie & Ind Graph, F-38402 St Martin Dheres, France
[5] Agr & Agri Food Canada, Bioprod & Bioproc Natl Program, Saskatoon, SK S7N 0X2, Canada
[6] Univ Saskatchewan, Dept Agr & Bioresource Engn, Saskatoon, SK S7N 5A9, Canada
基金
芬兰科学院; 中国国家自然科学基金;
关键词
bionanocomposites; cellulose nanocrystals; grafting; thermoforming; MAIZE STARCH NANOCRYSTALS; REINFORCED NATURAL-RUBBER; MECHANICAL-PROPERTIES; CHEMICAL-MODIFICATION; NANOCOMPOSITES; WHISKERS;
D O I
10.1002/mame.200800261
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This is the first report on a thermoformable bionanocomposite based on a natural nanocrystal and formed by grafting long polymer chains onto the surface of microcrystalline cellulose. For the cellulose nanocrystal-graft-poly(epsilon-caprolactone), the "graft from" strategy contributed to long and dense "plasticizing" PCL tails onto the CN surface as the key of thermoforming. The grafted PCL chains shielded the hydrophilic surface of CN and, hence, showed high water-resistance. Moreover, a strategy for developing new bionanocomposite materials based on natural nanocrystals has been presented.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 23 条
[1]   Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber [J].
Angellier, H ;
Molina-Boisseau, S ;
Lebrun, L ;
Dufresne, A .
MACROMOLECULES, 2005, 38 (09) :3783-3792
[2]   Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber [J].
Angellier, H ;
Molina-Boisseau, S ;
Dufresne, A .
MACROMOLECULES, 2005, 38 (22) :9161-9170
[3]   Surface chemical modification of waxy maize starch nanocrystals [J].
Angellier, H ;
Molina-Boisseau, S ;
Belgacem, MN ;
Dufresne, A .
LANGMUIR, 2005, 21 (06) :2425-2433
[4]   Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology [J].
Angellier, H ;
Choisnard, L ;
Molina-Boisseau, S ;
Ozil, P ;
Dufresne, A .
BIOMACROMOLECULES, 2004, 5 (04) :1545-1551
[5]   Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting [J].
Araki, J ;
Wada, M ;
Kuga, S .
LANGMUIR, 2001, 17 (01) :21-27
[6]   Effects of Starch Nanocrystal-graft-Polycaprolactone on Mechanical Properties of Waterborne Polyurethane-Based Nanocomposites [J].
Chang, Peter R. ;
Ai, Fujin ;
Chen, Yun ;
Dufresne, Alain ;
Huang, Jin .
JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 111 (02) :619-627
[7]   Simultaneous reinforcing and toughening: New nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals [J].
Chen, Guangjun ;
Wei, Ming ;
Chen, Jinghua ;
Huang, Jin ;
Dufresne, Alain ;
Chang, Peter R. .
POLYMER, 2008, 49 (07) :1860-1870
[8]   Fluorescently labeled cellulose nanocrystals for bioimaging applications [J].
Dong, Shuping ;
Roman, Maren .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (45) :13810-+
[9]   Reactions of cellulose and wood superficial hydroxy groups with organometallic compounds [J].
Fabbri, P ;
Champon, G ;
Castellano, M ;
Belgacem, MN ;
Gandini, A .
POLYMER INTERNATIONAL, 2004, 53 (01) :7-11
[10]   Highly filled bionanocomposites from functionalized polysaccharide nanocrystals [J].
Habibi, Youssef ;
Dufresne, Alain .
BIOMACROMOLECULES, 2008, 9 (07) :1974-1980