Size homotopy groups for computation of natural size distances

被引:44
作者
Frosini, P [1 ]
Mulazzani, M
机构
[1] Univ Bologna, Dept Math, I-40127 Bologna, Italy
[2] CIRAM, Bologna, Italy
关键词
shape; natural size distances; size homotopy groups;
D O I
10.36045/bbms/1103065863
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every manifold M endowed with a structure described by a function from M to the vector space R(k), a parametric family of groups, called size homotopy groups, is introduced and studied. Some lower bounds for natural size distances are obtained in this way.
引用
收藏
页码:455 / 464
页数:10
相关论文
共 18 条
[1]  
BOURBAKI N, 1947, TOPOLOGIE GEN, V3
[2]   SEEING - THE MATHEMATICAL VIEWPOINT [J].
BRUCE, JW .
MATHEMATICAL INTELLIGENCER, 1984, 6 (04) :18-25
[3]   SOME MATHEMATICAL PROBLEMS IN COMPUTER VISION [J].
BRUCKSTEIN, AM ;
TANNENBAUM, A .
ACTA APPLICANDAE MATHEMATICAE, 1993, 30 (02) :125-157
[4]  
Ferri M., 1994, Proceedings of the Second IEEE Workshop on Applications of Computer Vision (Cat. No.94TH06742), P223, DOI 10.1109/ACV.1994.341314
[5]   A DISTANCE FOR SIMILARITY CLASSES OF SUBMANIFOLDS OF A EUCLIDEAN-SPACE [J].
FROSINI, P .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 42 (03) :407-416
[6]  
Frosini P, 1996, MATH METHOD APPL SCI, V19, P555, DOI 10.1002/(SICI)1099-1476(19960510)19:7<555::AID-MMA787>3.0.CO
[7]  
2-X
[8]  
FROSINI P, IN PRESS NATURAL SIZ
[9]  
Frosini P., 1992, J COMBIN INFORM SYST, V17, P232
[10]  
FROSINI P, 1991, P SPIE INT ROB COMP, V1607, P122