Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region

被引:139
作者
Gollop, R [1 ]
Even, S [1 ]
Colova-Tsolova, V [1 ]
Perl, A [1 ]
机构
[1] Agr Res Org, Volcani Ctr, Dept Fruit Tree Breeding & Mol Genet, IL-50250 Bet Dagan, Israel
关键词
developmental expression; dfr; grape; light signalling; sucrose signalling;
D O I
10.1093/jexbot/53.373.1397
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Dihydroflavonol reductase (DFR) is a key enzyme involved in anthocyanin biosynthesis and proanthocyanidin synthesis in grape. DFR catalyses the reduction of dihydroflavonols to leucoanthocyanidins in the anthocyanin pathway. The DFR products, the leucoanthocyanidins, are substrates for the next step in the anthocyanin pathway and are also the substrates for the proanthocyanidin pathway. In the present study the promoter of the grape dfr gene was cloned. Analysis of the dfr promoter sequence revealed the existence of several putative DNA binding motifs. The dfr promoter was fused to the uidA gene and the control of this fusion and the endogenous dfr gene expression, was studied in transformed plants and in red cell suspension originated from fruits. The dfr promoter-uidA gene fusion was expressed in leaves, roots and stems. Deletions of the dfr promoter influenced the specificity of the expression of the GUS gene fusion in plantlet roots and the level of expression in plants and in the red cell suspension originated from fruits. The deletion analysis of the dfr promoter suggests that a specific sequence located between -725 to -233 might be involved in expression of the dfr gene in fruits. Light, calcium and sucrose induced the dfr gene expression. In the transformed suspension cultures, expression of both the endogenous dfr gene and the dfr promoter-uidA gene fusions was induced by white light. The induction by both light and calcium suggests the possible involvement of a UV receptors signal transduction pathway in the induction of the dfr gene. The induction of the dfr gene and the dfr promoter-uidA gene fusions by light and sucrose indicates a close interaction between sucrose and light signalling pathways.
引用
收藏
页码:1397 / 1409
页数:13
相关论文
共 61 条
[1]  
Boss P. K., 1996, Australian Journal of Grape and Wine Research, V2, P163, DOI 10.1111/j.1755-0238.1996.tb00104.x
[2]   Expression of anthocyanin biosynthesis pathway genes in red and white grapes [J].
Boss, PK ;
Davies, C ;
Robinson, SP .
PLANT MOLECULAR BIOLOGY, 1996, 32 (03) :565-569
[3]   Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L cv Shiraz grape berries and the implications for pathway regulation [J].
Boss, PK ;
Davies, C ;
Robinson, SP .
PLANT PHYSIOLOGY, 1996, 111 (04) :1059-1066
[4]   PHYTOCHROME SIGNAL-TRANSDUCTION PATHWAYS ARE REGULATED BY RECIPROCAL CONTROL MECHANISMS [J].
BOWLER, C ;
YAMAGATA, H ;
NEUHAUS, G ;
CHUA, NH .
GENES & DEVELOPMENT, 1994, 8 (18) :2188-2202
[5]   CYCLIC-GMP AND CALCIUM MEDIATE PHYTOCHROME PHOTOTRANSDUCTION [J].
BOWLER, C ;
NEUHAUS, G ;
YAMAGATA, H ;
CHUA, NH .
CELL, 1994, 77 (01) :73-81
[6]  
BOWLER C, 1994, PLANT CELL, V6, P1529, DOI 10.1105/tpc.6.11.1529
[7]   EXPRESSION OF THE ARABIDOPSIS FLORAL HOMEOTIC GENE AGAMOUS IS RESTRICTED TO SPECIFIC CELL-TYPES LATE IN FLOWER DEVELOPMENT [J].
BOWMAN, JL ;
DREWS, GN ;
MEYEROWITZ, EM .
PLANT CELL, 1991, 3 (08) :749-758
[8]   GENES DIRECTING FLOWER DEVELOPMENT IN ARABIDOPSIS [J].
BOWMAN, JL ;
SMYTH, DR ;
MEYEROWITZ, EM .
PLANT CELL, 1989, 1 (01) :37-52
[10]  
Chang S. J., 1993, Plant Molecular Biology Reporter, V11, P113, DOI 10.1007/BF02670468