Low temperature relaxational dynamics of the Ising chain in a transverse field

被引:124
作者
Sachdev, S [1 ]
Young, AP [1 ]
机构
[1] UNIV CALIF SANTA CRUZ,DEPT PHYS,SANTA CRUZ,CA 95064
关键词
D O I
10.1103/PhysRevLett.78.2220
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present asymptotically exact results for the real time order parameter correlations of a class of d = 1 Ising models in a transverse field at low temperatures (T) on both sides of the quantum critical point. The correlations are a product of a T-independent factor determined by quantum effects, and a T-dependent relaxation function which comes from a classical theory. We confirm our predictions by a no-foe-parameter comparison with numerical studies on the nearest neighbor spin-1/2 model.
引用
收藏
页码:2220 / 2223
页数:4
相关论文
共 18 条
[1]   Dynamical critical exponent of the one-dimensional random transverse-Ising model [J].
Asakawa, H .
PHYSICA A, 1996, 233 (1-2) :39-59
[2]   AUTOCORRELATION FUNCTION OF X-COMPONENT OF MAGNETIZATION IN ONE-DIMENSIONAL XY-MODEL [J].
CAPEL, HW ;
PERK, JHH .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1977, 87 (02) :211-242
[3]   FORM-FACTORS OF DESCENDANT OPERATORS IN PERTURBED CONFORMAL FIELD-THEORIES [J].
CARDY, JL ;
MUSSARDO, G .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :387-402
[4]   THEORY OF 2-DIMENSIONAL QUANTUM HEISENBERG ANTIFERROMAGNETS WITH A NEARLY CRITICAL GROUND-STATE [J].
CHUBUKOV, AV ;
SACHDEV, S ;
YE, J .
PHYSICAL REVIEW B, 1994, 49 (17) :11919-11961
[5]   SOLITONS IN ISING-LIKE QUANTUM SPIN CHAINS IN A MAGNETIC-FIELD - A 2ND QUANTIZATION APPROACH [J].
DEVREUX, F ;
BOUCHER, JP .
JOURNAL DE PHYSIQUE, 1987, 48 (10) :1663-1670
[6]   TIME-DEPENDENT STATISTICS OF ISING MODEL [J].
GLAUBER, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :294-&
[7]  
Korepin V. E., 1997, QUANTUM INVERSE SCAT, V3
[8]   Finite temperature correlations in the one-dimensional quantum Ising model [J].
Leclair, A ;
Lesage, F ;
Sachdev, S ;
Saleur, H .
NUCLEAR PHYSICS B, 1996, 482 (03) :579-612
[9]  
LIEB E, 1961, ANN PHYS-NEW YORK, V16, P406
[10]   SOLITON DAMPING AND TOPOLOGICAL ORDER IN QUASI-ONE-DIMENSIONAL SYSTEMS [J].
MAKI, K .
PHYSICAL REVIEW B, 1981, 24 (01) :335-340