Systematic and random error components in satellite precipitation data sets

被引:188
作者
AghaKouchak, Amir [1 ]
Mehran, Ali [1 ]
Norouzi, Hamidreza [2 ]
Behrangi, Ali [3 ]
机构
[1] Univ Calif Irvine, Dept Civil Environm Engn, Irvine, CA 92617 USA
[2] CUNY, New York City Coll Technol, Dept Construct Management & Civil Engn Technol, Brooklyn, NY 11210 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA USA
关键词
D O I
10.1029/2012GL051592
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study contributes to characterization of satellite precipitation error which is fundamental to develop uncertainty models and bias reduction algorithms. Systematic and random error components of several satellite precipitation products are investigated over different seasons, thresholds and temporal accumulations. The analyses show that the spatial distribution of systematic error has similar patterns for all precipitation products. However, the systematic (random) error of daily accumulations is significantly less (more) than that of high resolution 3-hr data. One should note that the systematic biases of satellite precipitation are distinctively different in the summer and winter. The systematic (random) error is remarkably higher (lower) during the winter. Furthermore, the systematic error seems to be proportional to the rain rate magnitude. The findings of this study highlight that bias removal methods should take into account the spatiotemporal characteristics of error as well as the proportionality of error to the magnitude of rain rate. Citation: AghaKouchak, A., A. Mehran, H. Norouzi, and A. Behrangi (2012), Systematic and random error components in satellite precipitation data sets, Geophys. Res. Lett., 39, L09406, doi:10.1029/2012GL051592.
引用
收藏
页数:4
相关论文
共 17 条
  • [1] Evaluation of satellite-retrieved extreme precipitation rates across the central United States
    AghaKouchak, A.
    Behrangi, A.
    Sorooshian, S.
    Hsu, K.
    Amitai, E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [2] Modeling Radar Rainfall Estimation Uncertainties: Random Error Model
    AghaKouchak, A.
    Habib, E.
    Bardossy, A.
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2010, 15 (04) : 265 - 274
  • [3] Hydrologic evaluation of satellite precipitation products over a mid-size basin
    Behrangi, Ali
    Khakbaz, Behnaz
    Jaw, Tsou Chun
    AghaKouchak, Amir
    Hsu, Kuolin
    Sorooshian, Soroosh
    [J]. JOURNAL OF HYDROLOGY, 2011, 397 (3-4) : 225 - 237
  • [4] Probabilistic and ensemble representations of the uncertainty in an IR/microwave satellite precipitation product
    Bellerby, TJ
    Sun, JZ
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2005, 6 (06) : 1032 - 1044
  • [5] Comparison of near-real-time precipitation estimates from satellite observations and numerical models
    Ebert, Elizabeth E.
    Janowiak, John E.
    Kidd, Chris
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2007, 88 (01) : 47 - +
  • [6] Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA
    Habib, Emad
    Henschke, Amy
    Adler, Robert F.
    [J]. ATMOSPHERIC RESEARCH, 2009, 94 (03) : 373 - 388
  • [7] Hong Y, 2006, WATER RESOUR RES, V42, DOI 10.1029/2005WR004398
  • [8] The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales
    Huffman, George J.
    Adler, Robert F.
    Bolvin, David T.
    Gu, Guojun
    Nelkin, Eric J.
    Bowman, Kenneth P.
    Hong, Yang
    Stocker, Erich F.
    Wolff, David B.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2007, 8 (01) : 38 - 55
  • [9] Joyce RJ, 2004, J HYDROMETEOROL, V5, P487, DOI 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO
  • [10] 2