The C-Terminal Repeating Units of CsgB Direct Bacterial Functional Amyloid Nucleation

被引:56
作者
Hammer, Neal D. [2 ]
McGuffie, Bryan A. [1 ]
Zhou, Yizhou [1 ]
Badtke, Matthew P. [1 ]
Reinke, Ashley A. [3 ]
Brannstrom, Kristoffer [4 ]
Gestwicki, Jason E. [3 ]
Olofsson, Anders [4 ]
Almqvist, Fredrik [5 ,6 ]
Chapman, Matthew R. [1 ,4 ]
机构
[1] Univ Michigan LSA, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Med, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA
[4] Umea Univ, Dept Med Biochem & Biophys, Chem Biol Ctr, S-90187 Umea, Sweden
[5] Umea Univ, Chem Biol Ctr, Dept Chem, S-90187 Umea, Sweden
[6] Umea Univ, Umea Ctr Microbial Res, S-90187 Umea, Sweden
基金
美国国家卫生研究院;
关键词
functional amyloid; nucleator; polymerization; ESCHERICHIA-COLI; TARGETING VIRULENCE; ALZHEIMERS-DISEASE; SURFACE ORGANELLES; BIOFILM FORMATION; COMMON MECHANISM; MOLECULAR-BASIS; BINDING CURLI; PROTEIN; OLIGOMERS;
D O I
10.1016/j.jmb.2012.05.043
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Curli are functional amyloids produced by enteric bacteria. The major curli fiber subunit, CsgA, self-assembles into an amyloid fiber in vitro. The minor curli subunit protein, CsgB, is required for CsgA polymerization on the cell surface. Both CsgA and CsgB are composed of five predicted beta-strand-loop-beta-strand-loop repeating units that feature conserved glutamine and asparagine residues. Because of this structural homology, we proposed that CsgB might form an amyloid template that initiates CsgA polymerization on the cell surface. To test this model, we purified wild-type CsgB and found that it self-assembled into amyloid fibers in vitro. Preformed CsgB fibers seeded CsgA polymerization as did soluble CsgB added to the surface of cells secreting soluble CsgA. To define the molecular basis of CsgB nucleation, we generated a series of mutants that removed each of the five repeating units. Each of these CsgB deletion mutants was capable of self-assembly in vitro. In vivo, membrane-localized mutants lacking the first, second, or third repeating units were able to convert CsgA into fibers. However, mutants missing either the fourth or fifth repeating units were unable to complement a csgB mutant. These mutant proteins were not localized to the outer membrane but were instead secreted into the extracellular milieu. Synthetic CsgB peptides corresponding to repeating units 1, 2, and 4 self-assembled into ordered amyloid polymers, while peptides corresponding to repeating units 3 and 5 did not, suggesting that there are redundant amyloidogenic domains in CsgB. Our results suggest a model where the rapid conversion of CsgB from unstructured protein to a beta-sheet-rich amyloid template anchored to the cell surface is mediated by the C-terminal repeating units. Published by Elsevier Ltd.
引用
收藏
页码:376 / 389
页数:14
相关论文
共 63 条
[1]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[2]   Curli biogenesis and function [J].
Barnhart, Michelle M. ;
Chapman, Matthew R. .
ANNUAL REVIEW OF MICROBIOLOGY, 2006, 60 :131-147
[3]   Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli [J].
Bian, Z ;
Normark, S .
EMBO JOURNAL, 1997, 16 (19) :5827-5836
[4]   Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils [J].
Bieschke, Jan ;
Herbst, Martin ;
Wiglenda, Thomas ;
Friedrich, Ralf P. ;
Boeddrich, Annett ;
Schiele, Franziska ;
Kleckers, Daniela ;
del Amo, Juan Miguel Lopez ;
Gruening, Bjoern A. ;
Wang, Qinwen ;
Schmidt, Michael R. ;
Lurz, Rudi ;
Anwyl, Roger ;
Schnoegl, Sigrid ;
Faendrich, Marcus ;
Frank, Ronald F. ;
Reif, Bernd ;
Guenther, Stefan ;
Walsh, Dominic M. ;
Wanker, Erich E. .
NATURE CHEMICAL BIOLOGY, 2012, 8 (01) :93-101
[5]   Two types of Alzheimer's β-amyloid (1-40) peptide membrane interactions:: Aggregation preventing transmembrane anchoring Versus accelerated surface fibril formation [J].
Bokvist, M ;
Lindström, F ;
Watts, A ;
Gröbner, G .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 335 (04) :1039-1049
[6]   Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases [J].
Bucciantini, M ;
Giannoni, E ;
Chiti, F ;
Baroni, F ;
Formigli, L ;
Zurdo, JS ;
Taddei, N ;
Ramponi, G ;
Dobson, CM ;
Stefani, M .
NATURE, 2002, 416 (6880) :507-511
[7]   TRANSPOSITION AND FUSION OF LAC GENES TO SELECTED PROMOTERS IN ESCHERICHIA-COLI USING BACTERIOPHAGE-LAMBDA AND BACTERIOPHAGE-MU [J].
CASADABAN, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1976, 104 (03) :541-555
[8]   Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates [J].
Cecchi, C ;
Baglioni, S ;
Fiorillo, C ;
Pensalfini, A ;
Liguri, G ;
Nosi, D ;
Rigacci, S ;
Bucciantini, M ;
Stefani, M .
JOURNAL OF CELL SCIENCE, 2005, 118 (15) :3459-3470
[9]   The biology and future prospects of antivirulence therapies [J].
Cegelski, Lynette ;
Marshall, Garland R. ;
Eldridge, Gary R. ;
Hultgren, Scott J. .
NATURE REVIEWS MICROBIOLOGY, 2008, 6 (01) :17-27
[10]   Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation [J].
Cegelski, Lynette ;
Pinkner, Jerome S. ;
Hammer, Neal D. ;
Cusumano, Corinne K. ;
Hung, Chia S. ;
Chorell, Erik ;
Aberg, Veronica ;
Walker, Jennifer N. ;
Seed, Patrick C. ;
Almqvist, Fredrik ;
Chapman, Matthew R. ;
Hultgren, Scott J. .
NATURE CHEMICAL BIOLOGY, 2009, 5 (12) :913-919