Protein structure elucidation from NMR proton densities

被引:30
作者
Grishaev, A [1 ]
Llinás, M [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
关键词
NMR direct method; NMR Bayesian analysis; NOE-only molecular structure; proteomics; structural genomics;
D O I
10.1073/pnas.042114399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The NMR-generated foc proton density affords a template to which the molecule has to be fitted to derive the structure. Here we present a computational protocol that achieves this goal. H-N atoms are readily recognizable from H-1 /H-2 exchange or H-1/N-15 heteronuclear single quantum correlation (HSQC experiments. The primary structure is threaded through the unassigned foc by leapfrogging along peptidyl amide H(N)s and the connected H(alpha)s. Via a Bayesian approach, the probabilities of the sequential connectivity hypotheses are inferred from likelihoods of H-N/H-N, H-N/H-alpha, and H-alpha/H-alpha interatomic distances as well as H-1 NMR chemical shifts, both derived from public databases. Once the polypeptide sequence is identified, directionality becomes established, and the foc N and C termini are recognized. After a similar procedure, side chain H atoms are found, including discriminated cis/trans proline loci. The folded structure then is derived via a direct molecular dynamics embedding into mirror image-related representations of the foc and selected according to a lowest energy criterion. The method was applied to foc densities calculated for two protein domains, col 2 and kringle 2. The obtained structures are within 1.0-1.5 Angstrom (backbone heavy atoms) and 1.5-2.0 Angstrom (all heavy atoms) rms deviations from reported x-ray and/or NMR structures.
引用
收藏
页码:6713 / 6718
页数:6
相关论文
共 27 条
[1]   The use of pseudocontact shifts to refine solution of paramagnetic metalloproteins: Met80Ala cyano-cytochrome c as an example [J].
Banci, L ;
Bertini, I ;
Bren, KL ;
Cremonini, MA ;
Gray, HB ;
Luchinat, C ;
Turano, P .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 1996, 1 (02) :117-126
[2]   DETERMINATION OF A HIGH-QUALITY NUCLEAR-MAGNETIC-RESONANCE SOLUTION STRUCTURE OF THE BOVINE PANCREATIC TRYPSIN-INHIBITOR AND COMPARISON WITH 3 CRYSTAL-STRUCTURES [J].
BERNDT, KD ;
GUNTERT, P ;
ORBONS, LPM ;
WUTHRICH, K .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 227 (03) :757-775
[3]   The second type II module from human matrix metalloproteinase 2:: structure, function and dynamics [J].
Briknarová, K ;
Grishaev, A ;
Bányai, L ;
Tordai, H ;
Patthy, L ;
Llinás, M .
STRUCTURE, 1999, 7 (10) :1235-1245
[4]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[5]  
Christopher JA, 1998, J MOL GRAPH MODEL, V16, P285
[6]   HIGH-RESOLUTION 3-DIMENSIONAL STRUCTURE OF INTERLEUKIN-1-BETA IN SOLUTION BY 3-DIMENSIONAL AND 4-DIMENSIONAL NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY [J].
CLORE, GM ;
WINGFIELD, PT ;
GRONENBORN, AM .
BIOCHEMISTRY, 1991, 30 (09) :2315-2323
[7]   Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase [J].
Cornilescu, G ;
Marquardt, JL ;
Ottiger, M ;
Bax, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (27) :6836-6837
[8]   Measurement of N-15-H-1 coupling constants in uniformly N-15-labeled proteins: Application to the photoactive yellow protein [J].
Dux, P ;
Whitehead, B ;
Boelens, R ;
Kaptein, R ;
Vuister, GW .
JOURNAL OF BIOMOLECULAR NMR, 1997, 10 (03) :301-306
[9]   CLOUDS, a protocol for deriving a molecular proton density via NMR [J].
Grishaev, A ;
Llinás, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6707-6712
[10]   SOLUTION STRUCTURE OF A CALMODULIN-TARGET PEPTIDE COMPLEX BY MULTIDIMENSIONAL NMR [J].
IKURA, M ;
CLORE, GM ;
GRONENBORN, AM ;
ZHU, G ;
KLEE, CB ;
BAX, A .
SCIENCE, 1992, 256 (5057) :632-638