Pharmacodynamics of Voriconazole in a Dynamic In Vitro Model of Invasive Pulmonary Aspergillosis: Implications for In Vitro Susceptibility Breakpoints

被引:33
作者
Jeans, Adam R. [1 ]
Howard, Susan J. [1 ]
Al-Nakeeb, Zaid [1 ]
Goodwin, Joanne [1 ]
Gregson, Lea [1 ]
Majithiya, Jayesh B. [1 ]
Lass-Floerl, Cornelia [2 ]
Cuenca-Estrella, Manuel [3 ]
Arendrup, Maiken C. [4 ]
Warn, Peter A. [1 ]
Hope, William W. [1 ]
机构
[1] Univ Manchester, Univ Hosp S Manchester Natl Hlth Serv Fdn Trust, Natl Inst Hlth Res Translat Res Facil Resp Med, Manchester Acad Hlth Sci Ctr, Manchester M13 9PT, Lancs, England
[2] Innsbruck Med Univ, Div Hyg & Med Microbiol, Innsbruck, Austria
[3] Inst Salud Carlos III, Ctr Nacl Microbiol, Dept Mycol, Madrid, Spain
[4] Statens Serum Inst, Dept Microbiol Surveillance & Res, Unit Mycol & Parasitol, DK-2300 Copenhagen, Denmark
基金
英国国家替代、减少和改良动物研究中心;
关键词
ANTIFUNGAL THERAPY; AZOLE RESISTANCE; FUMIGATUS; PHARMACOKINETICS; EFFICACY;
D O I
10.1093/infdis/jis372
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background. Voriconazole is a first-line agent for the treatment of invasive pulmonary aspergillosis (IPA). There are increasing reports of Aspergillus fumigatus isolates with reduced susceptibility to voriconazole. Methods. An in vitro dynamic model of IPA was developed that enabled simulation of human-like voriconazole pharmacokinetics. Galactomannan was used as a biomarker. The pharmacodynamics of voriconazole against wild-type and 3 resistant strains of A. fumigatus were defined. The results were bridged to humans to provide decision support for setting breakpoints for voriconazole using Clinical Laboratory Standards Institute (CLSI) and European Committee of Antimicrobial Susceptibility Testing (EUCAST) methodologies. Results. Isolates with higher minimum inhibitory concentrations (MICs) required higher area under the concentration time curves (AUCs) to achieve suppression of galactomannan. Using CLSI and EUCAST methodologies, the AUC:MIC values that achieved suppression of galactomannan were 55 and 32.1, respectively. Using CLSI and EUCAST methodologies, the trough concentration: MIC values that achieved suppression of galactomannan were 1.68 and 1, respectively. Potential CLSI breakpoints for voriconazole are <= 0.5 mg/L for susceptible and >1 mg/L for resistant. Potential EUCAST breakpoints for voriconazole are <= 1 mg/L for susceptible and >2 mg/L for resistant. Conclusions. This dynamic model of IPA is a useful tool to address many remaining questions related to antifungal treatment of Aspergillus spp.
引用
收藏
页码:442 / 452
页数:11
相关论文
共 18 条
[1]   In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model [J].
Andes, D ;
Marchillo, K ;
Stamstad, T ;
Conklin, R .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2003, 47 (10) :3165-3169
[2]   EFFECT OF 2',3'-DIDEHYDRO-3'-DEOXYTHYMIDINE IN AN IN-VITRO HOLLOW-FIBER PHARMACODYNAMIC MODEL SYSTEM CORRELATES WITH RESULTS OF DOSE-RANGING CLINICAL-STUDIES [J].
BILELLO, JA ;
BAUER, G ;
DUDLEY, MN ;
COLE, GA ;
DRUSANO, GL .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1994, 38 (06) :1386-1391
[3]  
D'Argenio DZ, 2009, ADAPT 5 USERS GUIDE
[4]   Wild-Type MIC Distributions and Epidemiological Cutoff Values for the Triazoles and Six Aspergillus spp. for the CLSI Broth Microdilution Method (M38-A2 Document) [J].
Espinel-Ingroff, A. ;
Diekema, D. J. ;
Fothergill, A. ;
Johnson, E. ;
Pelaez, T. ;
Pfaller, M. A. ;
Rinaldi, M. G. ;
Canton, E. ;
Turnidge, J. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2010, 48 (09) :3251-3257
[5]   Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis [J].
Herbrecht, R ;
Denning, DW ;
Patterson, TF ;
Bennett, JE ;
Greene, RE ;
Oestmann, JW ;
Kern, WV ;
Marr, KA ;
Ribaud, P ;
Lortholary, O ;
Sylvester, R ;
Rubin, RH ;
Wingard, JR ;
Stark, P ;
Durand, C ;
Caillot, D ;
Thiel, E ;
Chandrasekar, PH ;
Hodges, MR ;
Schlamm, HT ;
Troke, PF ;
de Pauw, B .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 347 (06) :408-415
[6]   Pathogenesis of Aspergillus fumigatus and the kinetics of galactomannan in an in vitro model of early invasive pulmonary aspergillosis:: Implications for antifungal therapy [J].
Hope, William W. ;
Kruhlak, Michael J. ;
Lyman, Caron A. ;
Petraitiene, Ruta ;
Petraitis, Vidmantas ;
Francesconi, Andrea ;
Kasai, Miki ;
Mickiene, Diana ;
Sein, Tin ;
Peter, Joanne ;
Kelaher, Amy M. ;
Hughes, Johanna E. ;
Cotton, Margaret P. ;
Cotten, Catherine J. ;
Bacher, John ;
Tripathi, Sanjay ;
Bermudez, Louis ;
Maugel, Timothy K. ;
Zerfas, Patricia M. ;
Wingard, John R. ;
Drusano, George L. ;
Walsh, Thomas J. .
JOURNAL OF INFECTIOUS DISEASES, 2007, 195 (03) :455-466
[7]   Population Pharmacokinetics of Voriconazole in Adults [J].
Hope, William W. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2012, 56 (01) :526-531
[8]   Pharmacokinetics and Pharmacodynamics of Posaconazole for Invasive Pulmonary Aspergillosis: Clinical Implications for Antifungal Therapy [J].
Howard, Susan J. ;
Lestner, Jodi M. ;
Sharp, Andrew ;
Gregson, Lea ;
Goodwin, Joanne ;
Slater, Joanne ;
Majithiya, Jayesh B. ;
Warn, Peter A. ;
Hope, William W. .
JOURNAL OF INFECTIOUS DISEASES, 2011, 203 (09) :1324-1332
[9]   Frequency and Evolution of Azole Resistance in Aspergillus fumigatus Associated with Treatment Failure [J].
Howard, Susan J. ;
Cerar, Dasa ;
Anderson, Michael J. ;
Albarrag, Ahmed ;
Fisher, Matthew C. ;
Pasqualotto, Alessandro C. ;
Laverdiere, Michel ;
Arendrup, Maiken C. ;
Perlin, David S. ;
Denning, David W. .
EMERGING INFECTIOUS DISEASES, 2009, 15 (07) :1068-1076
[10]   An adaptive grid non-parametric approach to pharmacokinetic and dynamic (PK/PD) population models [J].
Leary, R ;
Jelliffe, R ;
Schumitzky, A ;
Van Guilder, M .
FOURTEENTH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2001, :389-394