Multiple mechanisms of endocannabinoid response initiation in hippocampus

被引:93
作者
Edwards, DA
Kim, J
Alger, BE
机构
[1] Univ Maryland, Sch Med, Dept Physiol, Baltimore, MD 21201 USA
[2] Univ Maryland, Sch Med, Neurosci Program, Baltimore, MD 21201 USA
关键词
D O I
10.1152/jn.00813.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Endocannabinoids (eCBs) act as retrograde messengers at inhibitory synapses of the hippocampal CA1 region. Current models place eCB synthesis in the postsynaptic pyramidal cell and the site of eCB action at cannabinoid receptors located on presynaptic interneuron terminals. Four responses at the CA1-interneuron synapse are attributed to eCBs: depolarization-induced suppression of inhibition (DSI), G-protein-coupled receptor-mediated enhancement of DSI (Delta DSI), persistent suppression of evoked inhibitory postsynaptic currents (eIPSCs), and finally, mGluR-dependent long-term depression (iLTD). It has been proposed that all are mediated by the eCB, 2-arachidonoyl glycerol, yet there is evidence that DSI does not arise from the same underlying biochemical processes as the other responses. In view of the increasing importance of eCB effects in the brain, it will be essential to understand the mechanisms by which eCB effects are produced. Our results reveal new differences in the biochemical pathways by which the eCB-dependent responses are initiated. Both U73122, a phospholipase C antagonist, and RHC-80267, a diacylglycerol (DAG) lipase antagonist, prevented eCB-dependent iLTD induction by 3,5-dihydroxyphenylglycine ( DHPG). However, mAChR activation does not cause eCB-dependent iLTD. Neither enzyme inhibitor affects DSI, and persistent eCB-dependent eIPSC suppression induced by either mGluRs or mAChRs is unaffected by U73122. On the other hand, inhibition of DAG lipase prevents persistent eCB-dependent eIPSC suppression triggered by mAChRs. The results show that the biochemical pathways for the various eCB-dependent responses differ and might therefore be independently manipulated.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 37 条
[1]   The effects of cannabinoids on the brain [J].
Ameri, A .
PROGRESS IN NEUROBIOLOGY, 1999, 58 (04) :315-348
[2]   Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain [J].
Bisogno, T ;
Howell, F ;
Williams, G ;
Minassi, A ;
Cascio, MG ;
Ligresti, A ;
Matias, I ;
Schiano-Moriello, A ;
Paul, P ;
Williams, EJ ;
Gangadharan, U ;
Hobbs, C ;
Di Marzo, V ;
Doherty, P .
JOURNAL OF CELL BIOLOGY, 2003, 163 (03) :463-468
[3]   Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin [J].
Bisogno, T ;
Melck, D ;
De Petrocellis, L ;
Di Marzo, V .
JOURNAL OF NEUROCHEMISTRY, 1999, 72 (05) :2113-2119
[4]   Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells [J].
Bisogno, T ;
Sepe, N ;
Melck, D ;
Maurelli, S ;
DePetrocellis, L ;
DiMarzo, V .
BIOCHEMICAL JOURNAL, 1997, 322 :671-677
[5]   Endocannabinoids facilitate the induction of LTP in the hippocampus [J].
Carlson, G ;
Wang, Y ;
Alger, BE .
NATURE NEUROSCIENCE, 2002, 5 (08) :723-724
[6]   Endocannabinoid-mediated metaplasticity in the hippocampus [J].
Chevaleyre, V ;
Castillo, PE .
NEURON, 2004, 43 (06) :871-881
[7]   Heterosynaptic LTD of hippocampal GABAergic synapses: A novel role of endocannabinoids in regulating excitability [J].
Chevaleyre, V ;
Castillo, PE .
NEURON, 2003, 38 (03) :461-472
[8]   Functional organization of PLC signaling microdomains in neurons [J].
Delmas, P ;
Crest, M ;
Brown, DA .
TRENDS IN NEUROSCIENCES, 2004, 27 (01) :41-47
[9]   METABOTROPIC GLUTAMATE RECEPTOR-INDUCED DISINHIBITION IS MEDIATED BY REDUCED TRANSMISSION AT EXCITATORY SYNAPSES ONTO INTERNEURONS AND INHIBITORY SYNAPSES ONTO PYRAMIDAL CELLS [J].
DESAI, MA ;
MCBAIN, CJ ;
KAUER, JA ;
CONN, PJ .
NEUROSCIENCE LETTERS, 1994, 181 (1-2) :78-82
[10]   ISOLATION AND STRUCTURE OF A BRAIN CONSTITUENT THAT BINDS TO THE CANNABINOID RECEPTOR [J].
DEVANE, WA ;
HANUS, L ;
BREUER, A ;
PERTWEE, RG ;
STEVENSON, LA ;
GRIFFIN, G ;
GIBSON, D ;
MANDELBAUM, A ;
ETINGER, A ;
MECHOULAM, R .
SCIENCE, 1992, 258 (5090) :1946-1949