Antimony Chalcogenide/Lead Selenide Thin Film Solar Cell with 2.5% Conversion Efficiency Prepared by Chemical Deposition

被引:31
作者
Calixto-Rodriguez, M. [1 ]
Moreno Garcia, Harumi [1 ]
Nair, M. T. S. [1 ]
Nair, P. K. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Invest Energia, Temixco 62580, Morelos, Mexico
关键词
JUNCTION; COST;
D O I
10.1149/2.027304jss
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Antimony sulfide-selenide solid solutions offer optical band gaps, E-g, in the 1-1.88 eV interval; and lead selenide offers E-g upward of its bulk value, 0.28 eV, depending on the extent of quantum confinement. In this work, thin film solar cells of SnO2:F/CdS/Sb-2(Se/S)(3)/PbSe/C-Ag are developed by chemical deposition of the thin films on transparent conductive oxide (TCO) glass. To prepare the solar cell, first a CdS thin film of 100 nm in thickness is deposited on the TCO from a solution containing Cd(II)-citrate complex. On this, a thin film is deposited from a solution containing potassium-antimony tartrate, thioacetamide and selenosulfate, which upon heating at 280 degrees C in nitrogen ambient results in a Sb2S1.2Se1.8 film of 150 nm in thickness with an E-g of 1.67 eV. PbSe thin film 110 nm in thickness is deposited on it from a solution of Pb-citrate complex and selenosulfate, with crystalline grain diameter 10 nm, and E-g of 1.86 eV. The cell shows open circuit voltage (V-oc), 454 mV, short circuit current density (J(sc)) 12.5 mA/cm(2), fill factor (FF) 0.44 and conversion efficiency (eta) 2.5%. The observed cell parameters are backed by a tentative energy level diagram and an estimate for the light generated current density. (C) 2013 The Electrochemical Society. All rights reserved.
引用
收藏
页码:Q69 / Q73
页数:5
相关论文
共 36 条
[1]   Chemical bath deposition of ZnS thin films and modification by air annealing [J].
Arenas, OL ;
Nair, MTS ;
Nair, PK .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1997, 12 (10) :1323-1330
[2]  
Aylward GH, 1974, SI CHEM DATA
[3]   Analysis of a Bismuth Sulfide/Silicon Junction for Building Thin Film Solar Cells [J].
Becerra, D. ;
Nair, M. T. S. ;
Nair, P. K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (07) :H741-H749
[4]   PREDICTION OF FLATBAND POTENTIALS AT SEMICONDUCTOR-ELECTROLYTE INTERFACES FROM ATOMIC ELECTRONEGATIVITIES [J].
BUTLER, MA ;
GINLEY, DS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (02) :228-232
[5]   Size-dependent extinction coefficients of PbS quantum dots [J].
Cademartiri, Ludovico ;
Montanari, Erica ;
Calestani, Gianluca ;
Migliori, Andrea ;
Guagliardi, Antonietta ;
Ozin, Geoffrey A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (31) :10337-10346
[6]  
Chemical Selection Working Group: CSWG, 2002, CSWG402
[7]   PbSe Nanocrystal Excitonic Solar Cells [J].
Choi, Joshua J. ;
Lim, Yee-Fun ;
Santiago-Berrios, Mitk'El B. ;
Oh, Matthew ;
Hyun, Byung-Ryool ;
Sung, Liangfeng ;
Bartnik, Adam C. ;
Goedhart, Augusta ;
Malliaras, George G. ;
Abruna, Hector D. ;
Wise, Frank W. ;
Hanrath, Tobias .
NANO LETTERS, 2009, 9 (11) :3749-3755
[8]   Effect of Interfacial Engineering in Solid-State Nanostructured Sb2S3 Heterojunction Solar Cells [J].
Fukumoto, Takafumi ;
Moehl, Thomas ;
Niwa, Yusuke ;
Nazeeruddin, Md. K. ;
Graetzel, Michael ;
Etgar, Lioz .
ADVANCED ENERGY MATERIALS, 2013, 3 (01) :29-33
[9]  
Hotop H., 1975, Journal of Physical and Chemical Reference Data, V4, P539, DOI 10.1063/1.555524
[10]  
KITTEL C, 1996, INTRO SOLID STATE PH, P61