Air sparging has proven to be an effective remediation technique for treating saturated soils and ground water contaminated by volatile organic compounds (VOCs). Since little is known about the system variables and mass transfer mechanisms important to air sparging, several researchers have recently performed laboratory investigations to study such issues. This paper presents the results of column experiments performed to investigate the behavior of dense nonaqueous phase liquids (DNAPLs), specifically trichloroethylene (TCE), during air sparging. The specific objectives of the study were (1) to compare the removal of dissolved TCE with the removal of dissolved light nonaqueous phase liquids (LNAPLs), such as benzene or toluene; (2) to determine the effect of injected air-flow rate on dissolved TCE removal; (3) to determine the effect of initial dissolved TCE concentration on removal efficiency: and (4) to determine the differences in removal between dissolved and pure-phase TCE. The test results showed that (1) the removal of dissolved TCE was similar to that of dissolved LNAPL; (2) increased air-injection rates led to increased TCE removal at lower ranges of air injection, but further increases at higher ranges of air injection did not increase the rate of removal, indicating a threshold removal rate had been reached; (3) increased initial concentration of dissolved TCE resulted in similar rates of removal; and (4) the removal of pure-phase TCE was difficult using a low air-injection rate, but higher air-injection rates led to easier removal.