A Hasting-Metropolis algorithm with learning proposal

被引:3
作者
Chauveau, D [1 ]
Vandekerkhove, P [1 ]
机构
[1] Univ Marne La Vallee, F-77454 Marne La Vallee 2, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 329卷 / 02期
关键词
D O I
10.1016/S0764-4442(99)80484-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a non-homogeneous Hastings-Metropolis algorithm for which the proposal density approximates the target density, as the number of iterations increases. The proposal at the n-th step is a non-parametric estimate of the density of the algorithm, and uses an increasing number of i.i.d. copies of the Markov chain. The resulting algorithm converges (in n) geometrically faster than a Hastings-Metropolis algorithm with an arbitrary proposal. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:173 / 176
页数:4
相关论文
共 5 条
[1]  
Bosq D., 1987, THEORIE ESTIMATION F
[2]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[3]  
HOLDEN L, 1996, GEOMETRIC CONVERGENC
[4]  
Robert C., 1996, METHODES MONTE CARLO
[5]  
VANDEKERKHOVE P, 1998, SEQUENTIAL METROPOLI