Orbital Identification of Carbonate-Bearing Rocks on Mars

被引:526
作者
Ehlmann, Bethany L. [1 ]
Mustard, John F. [1 ]
Murchie, Scott L. [2 ]
Poulet, Francois [3 ]
Bishop, Janice L. [4 ,5 ]
Brown, Adrian J. [4 ,5 ]
Calvin, Wendy M. [6 ]
Clark, Roger N. [7 ]
Des Marais, David J. [5 ]
Milliken, Ralph E. [8 ]
Roach, Leah H. [1 ]
Roush, Ted L. [5 ]
Swayze, Gregg A. [7 ]
Wray, James J. [9 ]
机构
[1] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA
[2] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[3] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France
[4] SETI Inst, Mountain View, CA 94043 USA
[5] NASA, Ames Res Ctr, Mountain View, CA 94043 USA
[6] Univ Nevada, Dept Geol Sci & Engn, Reno, NV 89557 USA
[7] US Geol Survey, Lakewood, CO 80225 USA
[8] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[9] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
关键词
D O I
10.1126/science.1164759
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Geochemical models for Mars predict carbonate formation during aqueous alteration. Carbonate- bearing rocks had not previously been detected on Mars' surface, but Mars Reconnaissance Orbiter mapping reveals a regional rock layer with near- infrared spectral characteristics that are consistent with the presence of magnesium carbonate in the Nili Fossae region. The carbonate is closely associated with both phyllosilicate- bearing and olivine- rich rock units and probably formed during the Noachian or early Hesperian era from the alteration of olivine by either hydrothermal fluids or near- surface water. The presence of carbonate as well as accompanying clays suggests that waters were neutral to alkaline at the time of its formation and that acidic weathering, proposed to be characteristic of Hesperian Mars, did not destroy these carbonates and thus did not dominate all aqueous environments.
引用
收藏
页码:1828 / 1832
页数:5
相关论文
共 45 条
[1]  
[Anonymous], 2007, USGS DIGITAL DATA SE
[2]   Spectroscopic identification of carbonate minerals in the martian dust [J].
Bandfield, JL ;
Glotch, TD ;
Christensen, PR .
SCIENCE, 2003, 301 (5636) :1084-1087
[3]   Global mineralogical and aqueous mars history derived from OMEGA/Mars express data [J].
Bibring, JP ;
Langevin, Y ;
Mustard, JF ;
Poulet, F ;
Arvidson, R ;
Gendrin, A ;
Gondet, B ;
Mangold, N ;
Pinet, P ;
Forget, F .
SCIENCE, 2006, 312 (5772) :400-404
[4]   AN OBSERVATIONAL SEARCH FOR CARBONATES ON MARS [J].
BLANEY, DL ;
MCCORD, TB .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1989, 94 (B8) :10159-10166
[5]   Alteration assemblages in martian meteorites: Implications for near-surface processes [J].
Bridges, JC ;
Catling, DC ;
Saxton, JM ;
Swindle, TD ;
Lyon, IC ;
Grady, MM .
SPACE SCIENCE REVIEWS, 2001, 96 (1-4) :365-392
[6]   Atmospheric conditions on early Mars and the missing layered carbonates [J].
Bullock, Mark A. ;
Moore, Jeffrey M. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (19)
[7]  
Burns R.G., 1993, Mineralogical Applications of Crystal Field Theory, V5
[8]   HYDROUS CARBONATES ON MARS - EVIDENCE FROM MARINER 6/7 INFRARED SPECTROMETER AND GROUND-BASED TELESCOPIC SPECTRA [J].
CALVIN, WM ;
KING, TVV ;
CLARK, RN .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1994, 99 (E7) :14659-14675
[9]   A chemical model for evaporites on early Mars: Possible sedimentary tracers of the early climate and implications for exploration [J].
Catling, DC .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1999, 104 (E7) :16453-16469
[10]   Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates [J].
Chevrier, Vincent ;
Poulet, Francois ;
Bibring, Jean-Pierre .
NATURE, 2007, 448 (7149) :60-63