Electrochemical DNA Biosensor Based on Nanoporous Gold Electrode and Multifunctional Encoded DNA-Au Bio Bar Codes

被引:278
作者
Hu, Kongcheng [1 ]
Lan, Dongxiao [1 ]
Li, Xuemei [1 ]
Zhang, Shusheng [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, Minist Educ, Key Lab Ecochem Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1021/ac8017197
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A sensitive electrochemical DNA sensor based on nanoporous gold (NPG) electrode and multifunctional encoded Au nanoparticle (AuNP) was developed. The NPG electrode was prepared with a simple dealloying strategy, by which silver was dissoluted from silver/gold alloys in nitric acid, making the active surface area of NPG electrode 9.2 times higher than that of a bare flat one characterized by cyclic voltammetry. A DNA biosensor was fabricated by immobilizing capture probe DNA on the NPG electrode and hybridization with target DNA, which further hybridized with the reporter DNA loaded on the AuNPs. The AuNP contained two kinds of bio bar code DNA, one was complementary to the target DNA, while the other was not, reducing the cross reaction between the targets and reporter DNA on the same AuNP. Electrochemical signals of [Ru(NH3)(6)](3+) bound to the reporter DNA via electrostatic interactions were measured by chronocoulometry. Taking advantage of dual-amplification effects of the NPG electrode and multifunctional encoded AuNP, this DNA biosensor could detect the DNA target quantitatively, in the range of 8.0 x 10(-1)7 - 1.6 x 10(-12) M, with a limit of detection as low as 28 aM, and exhibited excellent selectivity even for single-mismatched DNA detection.
引用
收藏
页码:9124 / 9130
页数:7
相关论文
共 47 条
[1]   Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres [J].
Bartlett, PN ;
Baumberg, JJ ;
Birkin, PR ;
Ghanem, MA ;
Netti, MC .
CHEMISTRY OF MATERIALS, 2002, 14 (05) :2199-2208
[2]   Electrocatalysis with monolayer modified highly organized macroporous electrodes [J].
Ben-Ali, S ;
Cook, DA ;
Evans, SAG ;
Thienpont, A ;
Bartlett, PN ;
Kuhn, A .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (09) :747-751
[3]   Indicator free DNA hybridization detection by impedance measurement based on the DNA-doped conducting polymer film formed on the carbon nanotube modified electrode [J].
Cai, H ;
Xu, Y ;
He, PG ;
Fang, YZ .
ELECTROANALYSIS, 2003, 15 (23-24) :1864-1870
[4]   An electrochemical DNA hybridization detection assay based on a silver nanoparticle label [J].
Cai, H ;
Xu, Y ;
Zhu, NN ;
He, PG ;
Fang, YZ .
ANALYST, 2002, 127 (06) :803-808
[5]   Electrochemical DNA biosensor based on conducting polyaniline nanotube array [J].
Chang, Haixin ;
Yuan, Ying ;
Shi, Nanlin ;
Guan, Yifu .
ANALYTICAL CHEMISTRY, 2007, 79 (13) :5111-5115
[6]   Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film [J].
Chen, Xiaojun ;
Wang, Yuanyuan ;
Zhou, Jinjun ;
Yan, Wei ;
Li, Xinghua ;
Zhu, Jun-Jie .
ANALYTICAL CHEMISTRY, 2008, 80 (06) :2133-2140
[7]   Electrochemical detection of mismatched DNA using a MutS probe [J].
Cho, Minseon ;
Lee, Sohyun ;
Han, Se-Young ;
Park, Jin-Young ;
Rahman, Md Aminur ;
Shim, Yoon-Bo ;
Ban, Changill .
NUCLEIC ACIDS RESEARCH, 2006, 34 (10)
[8]   Nanoporous metals with controlled multimodal pore size distribution [J].
Ding, Y ;
Erlebacher, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (26) :7772-7773
[9]   Electrochemical DNA sensors [J].
Drummond, TG ;
Hill, MG ;
Barton, JK .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1192-1199
[10]   Evolution of nanoporosity in dealloying [J].
Erlebacher, J ;
Aziz, MJ ;
Karma, A ;
Dimitrov, N ;
Sieradzki, K .
NATURE, 2001, 410 (6827) :450-453