Role of alpha-helical coiled-coil interactions in receptor dimerization, signaling, and adaptation during bacterial chemotaxis

被引:84
作者
Surette, MG [1 ]
Stock, JB [1 ]
机构
[1] PRINCETON UNIV,DEPT MOL BIOL,PRINCETON,NJ 08544
关键词
D O I
10.1074/jbc.271.30.17966
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The aspartate receptor, Tar, is a member of a large family of signal transducing membrane receptors that interact with CheA and CheW proteins to mediate the chemotactic responses of bacteria, A highly conserved cytoplasmic region, the signaling domain, is flanked by two sequences, methylated helices 1 and 2 (MH1 and MH2), that are predicted to form alpha-helical coiled-coils, MH1 and MH2 contain glutamine and glutamate residues that are subject to deamidation, methylation, and demethylation. We show that the signaling domain is an independently folding unit that binds CheW, When expressed in vivo the signaling domain inhibits CheA kinase activity, but if MH1 or an unrelated leucine zipper coiled-coil sequence is attached to the signaling domain, CheA is activated, A construct that contains a leucine zipper fused to MH1-signaling domain-MH2 also activates the kinase, both in vivo and in vitro, and this activation is regulated by the level of glutamate modification, These findings support a model for receptor signaling where aspartate binding controls the relative orientation of receptor monomers to favor the formation of coiled-coils between MH1 and/or MH2 between subunits, Glutamate modification may stabilize these coiled-coils by reducing electrostatic repulsion between helices.
引用
收藏
页码:17966 / 17973
页数:8
相关论文
共 55 条
[1]   CONSTITUTIVELY SIGNALING FRAGMENTS OF TSR, THE ESCHERICHIA-COLI SERINE CHEMORECEPTOR [J].
AMES, P ;
PARKINSON, JS .
JOURNAL OF BACTERIOLOGY, 1994, 176 (20) :6340-6348
[3]   PREDICTING COILED COILS BY USE SF PAIRWISE RESIDUE CORRELATIONS [J].
BERGER, B ;
WILSON, DB ;
WOLF, E ;
TONCHEV, T ;
MILLA, M ;
KIM, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8259-8263
[4]   ATTENUATION OF SENSORY RECEPTOR SIGNALING BY COVALENT MODIFICATION [J].
BORKOVICH, KA ;
ALEX, LA ;
SIMON, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (15) :6756-6760
[5]   TRANSMEMBRANE SIGNAL TRANSDUCTION IN BACTERIAL CHEMOTAXIS INVOLVES LIGAND-DEPENDENT ACTIVATION OF PHOSPHATE GROUP TRANSFER [J].
BORKOVICH, KA ;
KAPLAN, N ;
HESS, JF ;
SIMON, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (04) :1208-1212
[6]   COMPUTER-SIMULATION OF THE PHOSPHORYLATION CASCADE CONTROLLING BACTERIAL CHEMOTAXIS [J].
BRAY, D ;
BOURRET, RB ;
SIMON, MI .
MOLECULAR BIOLOGY OF THE CELL, 1993, 4 (05) :469-482
[7]   FUNCTIONAL DOMAINS OF THE ARAC PROTEIN [J].
BUSTOS, SA ;
SCHLEIF, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (12) :5638-5642
[8]   A GENERAL-METHOD FOR FACILITATING HETERODIMERIC PAIRING BETWEEN 2 PROTEINS - APPLICATION TO EXPRESSION OF ALPHA-T-CELL AND BETA-T-CELL RECEPTOR EXTRACELLULAR SEGMENTS [J].
CHANG, HC ;
BAO, ZZ ;
YAO, Y ;
TSE, AGD ;
GOYARTS, EC ;
MADSEN, M ;
KAWASAKI, E ;
BRAUER, PP ;
SACCHETTINI, JC ;
NATHENSON, SG ;
REINHERZ, EL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (24) :11408-11412
[9]   LOCK ON OFF DISULFIDES IDENTIFY THE TRANSMEMBRANE SIGNALING HELIX OF THE ASPARTATE RECEPTOR [J].
CHERVITZ, SA ;
FALKE, JJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (41) :24043-24053
[10]   TRANSMEMBRANE SIGNALING BY THE ASPARTATE RECEPTOR - ENGINEERED DISULFIDES REVEAL STATIC REGIONS OF THE SUBUNIT INTERFACE [J].
CHERVITZ, SA ;
LIN, CM ;
FALKE, JJ .
BIOCHEMISTRY, 1995, 34 (30) :9722-9733