Activity of recombinant HIV-1 integrase on mini-HIV DNA

被引:40
作者
Cherepanov, P
Surratt, D
Toelen, J
Pluymers, W
Griffith, J
De Clercq, E
Debyser, Z
机构
[1] Katholieke Univ Leuven, Rega Inst Med Res, B-3000 Louvain, Belgium
[2] Univ N Carolina, Lineberger Canc Ctr, Chapel Hill, NC 27599 USA
关键词
D O I
10.1093/nar/27.10.2202
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA into the genome of a human cell is an essential step in the viral replication cycle. Understanding of the integration process has been facilitated by the development of in vitro assays using specific oligonucleotides and recombinant integrase. However, understanding of the biology of retroviral integration will require in vitro and in vivo model systems using long DNA substrates that mimic the HIV cDNA. We have now studied the activity of recombinant HIV-1 integrase on a linear 4.7 kb double-stranded DNA, containing flanking regions of similar to 200 bp that represent the intact ends of the HIV-1 long terminal repeat (LTR) sequences (mini-HIV). The strand transfer products of the integration reaction can be directly visualized after separation in agarose gels by ethidium bromide staining. The most prominent reaction product resulted from integration of one LTR end into another LTR end (U5 into U5 and U5 into U3). Sequence analysis of the reaction products showed them to be products of legitimate integration preceded by correct processing of the viral LTR ends. Hotspots for integration were detected. Electron microscopy revealed the presence of a range of reaction products resulting from single or multiple integration events. The binding of HIV-1 integrase to mini-HIV DNA was visualized. Oligomers of integrase seem to induce DNA looping whereby the enzyme often appears to be bound to the DNA substrate that adopts the structure of a three-site synapsis that is reminiscent of the Mu phage transposase complex.
引用
收藏
页码:2202 / 2210
页数:9
相关论文
共 32 条
  • [1] ASSANTEAPPIAH E, 1997, ANTIVIR RES, V36, P139
  • [2] Brown P. O., 1997, P161
  • [3] CORRECT INTEGRATION OF RETROVIRAL DNA INVITRO
    BROWN, PO
    BOWERMAN, B
    VARMUS, HE
    BISHOP, JM
    [J]. CELL, 1987, 49 (03) : 347 - 356
  • [4] A NUCLEAR-LOCALIZATION SIGNAL WITHIN HIV-1 MATRIX PROTEIN THAT GOVERNS INFECTION OF NONDIVIDING CELLS
    BUKRINSKY, MI
    HAGGERTY, S
    DEMPSEY, MP
    SHAROVA, N
    ADZHUBEI, A
    SPITZ, L
    LEWIS, P
    GOLDFARB, D
    EMERMAN, M
    STEVENSON, M
    [J]. NATURE, 1993, 365 (6447) : 666 - 669
  • [5] RETROVIRAL DNA INTEGRATION DIRECTED BY HIV INTEGRATION PROTEIN INVITRO
    BUSHMAN, FD
    FUJIWARA, T
    CRAIGIE, R
    [J]. SCIENCE, 1990, 249 (4976) : 1555 - 1558
  • [7] Mode of interaction of G-quartets with the integrase of human immunodeficiency virus type 1
    Cherepanov, P
    Este, JA
    Rando, RF
    Ojwang, JO
    Reekmans, G
    Steinfeld, R
    David, G
    De Clercq, E
    Debyser, Z
    [J]. MOLECULAR PHARMACOLOGY, 1997, 52 (05) : 771 - 780
  • [8] GENE DISRUPTION IN ESCHERICHIA-COLI - TCR AND KM(R) CASSETTES WITH THE OPTION OF FLP-CATALYZED EXCISION OF THE ANTIBIOTIC-RESISTANCE DETERMINANT
    CHEREPANOV, PP
    WACKERNAGEL, W
    [J]. GENE, 1995, 158 (01) : 9 - 14
  • [9] A STABLE COMPLEX BETWEEN INTEGRASE AND VIRAL-DNA ENDS MEDIATES HUMAN-IMMUNODEFICIENCY-VIRUS INTEGRATION IN-VITRO
    ELLISON, V
    BROWN, PO
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) : 7316 - 7320
  • [10] EFFICIENT MAGNESIUM-DEPENDENT HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INTEGRASE ACTIVITY
    ENGELMAN, A
    CRAIGIE, R
    [J]. JOURNAL OF VIROLOGY, 1995, 69 (09) : 5908 - 5911