Identification of genes in an extraintestinal isolate of Escherichia coli with increased expression after exposure to human urine

被引:92
作者
Russo, TA
Carlino, UB
Mong, A
Jodush, ST
机构
[1] SUNY Buffalo, Dept Med, Div Infect Dis, Buffalo, NY 14214 USA
[2] SUNY Buffalo, Dept Microbiol, Buffalo, NY 14214 USA
[3] SUNY Buffalo, Ctr Microbial Pathogenesis, Buffalo, NY 14214 USA
关键词
D O I
10.1128/IAI.67.10.5306-5314.1999
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The identification of genes with increased expression in vivo may lead to the identification of novel or unrecognized virulence traits and/or recognition of environmental signals involved in modulating gene expression. Our laboratory is studying an extraintestinal isolate of Escherichia coli as a model pathogen. We had previously used human urine ex vivo to identify the unrecognized urovirulence genes guaA and argC and to establish that arginine and guanine (or derivatives) were limiting in this body fluid (T. A. Russo et al., Mol. Microbiol. 22:217-229, 1996). In this study, we hare continued with this approach and identified three additional genes that have increased expression in human urine relative to Luria-Bertani (LB) medium. Expression of ure1 (urine-responsive element) is increased a mean of 17.6-fold in urine but completely suppressed by exogenous glucose. This finding suggests that ure1 is regulated by catabolite repression and that limiting glucose in urine is a regulatory signal. ure1 is present in the E. coli K-12 genome, but its function is unknown. Although disruption of ure1 results in diminished growth in human urine, limiting concentrations of amino acids, nucleosides, or iron (Fe), or changes in osmolarity or pH do not affect the expression of ure1. Therefore, Ure1. appears to have a role independent of the synthesis or uptake of these nutrients and does not appear to be involved in osmoprotection. iroN(E. coli) is a novel E. coli gene with 77% DNA homology to a catecholate siderophore receptor gene recently identified in Salmonella. Its expression is increased a mean of 27.2-fold in urine and is repressed by exogenous Fe and a urinary pH of 5.0. This finding supports the contention that Fe is a limiting element in urine and that alteration of pH can affect gene expression. It is linked to the P-pilus (prs) and F1C fimbrial (foc) gene dusters on a pathogenicity island and appears to have been acquired by IS1230-mediated horizontal transmission. The homologous iroN(E. coli) sequence is significantly more prevalent in urinary tract and blood isolates of E. coli compared to fecal isolates. Last, the expression of ArtJ, an arginine periplasmic binding protein, is increased a mean of 16.6-fold in urine. This finding implicates arginine concentrations as limited in urine and, in combination with previous data demonstrating that argC is important for urovirulence, suggests that the ability off. coli to synthesize or acquire arginine is important for urovirulence. ure1, iroN(E. coli), and artJ all have increased expression in human blood and ascites relative to LB medium as well. The identification of these genes increases our understanding of regulatory signals present in human urine, blood, and ascites. Ure1, IroN(E. coli) and ArtJ also warrant further evaluation as virulence traits both within and outside the urinary tract.
引用
收藏
页码:5306 / 5314
页数:9
相关论文
共 51 条
[1]  
[Anonymous], COMMUNICATION
[2]  
Åslund F, 1999, J BACTERIOL, V181, P1375
[3]  
Asscher AW, 1968, URINARY TRACT INFECT, P3
[4]  
Bäumler AJ, 1998, J BACTERIOL, V180, P1446
[5]   Acid stress responses in enterobacteria [J].
Bearson, S ;
Bearson, B ;
Foster, JW .
FEMS MICROBIOLOGY LETTERS, 1997, 147 (02) :173-180
[6]  
CHAMBERS S, 1985, J INFECT DIS, V152, P1308, DOI 10.1093/infdis/152.6.1308
[7]   ISOLATION OF GLYCINE BETAINE AND PROLINE BETAINE FROM HUMAN-URINE - ASSESSMENT OF THEIR ROLE AS OSMOPROTECTIVE AGENTS FOR BACTERIA AND THE KIDNEY [J].
CHAMBERS, ST ;
KUNIN, CM .
JOURNAL OF CLINICAL INVESTIGATION, 1987, 79 (03) :731-737
[8]  
Collighan RJ, 1997, FEMS MICROBIOL LETT, V154, P207, DOI [10.1016/S0378-1097(97)00326-1, 10.1111/j.1574-6968.1997.tb12645.x]
[9]  
Donnenberg Michael S., 1996, P135
[10]   INFECTIONS DUE TO GRAM-NEGATIVE ORGANISMS - AN ANALYSIS OF 860 PATIENTS WITH BACTEREMIA AT UNIVERSITY OF MINNESOTA MEDICAL CENTER, 1958-1966 [J].
DUPONT, HL ;
SPINK, WW .
MEDICINE, 1969, 48 (04) :307-+