Metal-binding affinity of the transmembrane site in ZntA: Implications for metal selectivity

被引:60
作者
Liu, JB [1 ]
Dutta, SJ [1 ]
Stemmler, AJ [1 ]
Mitra, B [1 ]
机构
[1] Wayne State Univ, Dept Biochem & Mol Biol, Sch Med, Detroit, MI 48201 USA
关键词
D O I
10.1021/bi051836n
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ZntA, a P-1B-type ATPase, confers resistance specifically to Pb2+, Zn2+, and Cd-2 in Escherichia coli. Inductively coupled plasma mass spectrometry measurements show that ZntA binds two metal ions with high affinity, one in the N-terminal domain and another in the transmembrane domain. Both sites can bind monovalent and divalent metal ions. Two proteins, Delta N-ZntA, in which the N-terminal domain is deleted, and C59A/C62A-ZntA, in which the N-terminal metal-binding site is disabled by site-specific mutagenesis, can only bind one metal ion. Because C59A/C62A-ZntA can bind a metal ion at the transmembrane site, the N-terminal domain does not block direct access of metal ions to it from the cytosol. A third mutant protein, C392A/C394A-ZntA, in which cysteines from the conserved CPC motif in transmembrane helix 6 are altered, binds metal ions only at the N-terminal site, indicating that both these cysteines form part of the transmembrane site. The metal affinity of the transmembrane site was determined in Delta N-ZntA and C59A/C62A-ZntA by competition titration using a metal ion indicator and by tryptophan fluorescence quenching. The binding affinity for the physiological substrates, Zn2+, Pb2+, and Cd2+, as well as for the extremely poor substrates, Cu2+, Ni2+, and Co2+, range from 10(6)-10(10) M-1, and does not correlate with the metal selectivity shown by ZntA. Selectivity in ZntA possibly results from differences in metal-binding geometry that produce different structural responses. The affinity of the transmembrane site for metal ions is of similar magnitude to that of the N-terminal site [Liu J. et al. (2005) Biochemistry 44, 5159-5167]; thus, metal transfer between them would be facile.
引用
收藏
页码:763 / 772
页数:10
相关论文
共 43 条
[1]   Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases [J].
Argüello, JM .
JOURNAL OF MEMBRANE BIOLOGY, 2003, 195 (02) :93-108
[2]   Evolution of substrate specificities in the P-type ATPase superfamily [J].
Axelsen, KB ;
Palmgren, MG .
JOURNAL OF MOLECULAR EVOLUTION, 1998, 46 (01) :84-101
[3]   A possible regulatory role for the metal-binding domain of CadA, the Listeria monocytogenes Cd2+-ATPase [J].
Bal, N ;
Mintz, E ;
Guillain, F ;
Catty, P .
FEBS LETTERS, 2001, 506 (03) :249-252
[4]   Cd2+ and the N-terminal metal-binding domain protect the putative membranous CPC motif of the Cd2+-ATPase of Listeria monocytogenes [J].
Bal, N ;
Wu, CC ;
Catty, P ;
Guillain, F ;
Mintz, E .
BIOCHEMICAL JOURNAL, 2003, 369 :681-685
[5]   A new zinc-protein coordination site in intracellular metal trafficking: Solution structure of the Apo and Zn(II) forms of ZntA(46-118) [J].
Banci, L ;
Bertini, L ;
Ciofi-Baffoni, S ;
Finney, LA ;
Outten, CE ;
O'Halloran, TV .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 323 (05) :883-897
[6]   THE WILSON DISEASE GENE IS A PUTATIVE COPPER TRANSPORTING P-TYPE ATPASE SIMILAR TO THE MENKES GENE [J].
BULL, PC ;
THOMAS, GR ;
ROMMENS, JM ;
FORBES, JR ;
COX, DW .
NATURE GENETICS, 1993, 5 (04) :327-337
[7]   The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance [J].
Busenlehner, LS ;
Pennella, MA ;
Giedroc, DP .
FEMS MICROBIOLOGY REVIEWS, 2003, 27 (2-3) :131-143
[8]   Elucidation of primary (α3N) and vestigial (α5) heavy metal-binding sites in Staphylococcus aureus pI258 CadC:: Evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins [J].
Busenlehner, LS ;
Weng, TC ;
Penner-Hahn, JE ;
Giedroc, DP .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 319 (03) :685-701
[9]   Spectroscopic properties of the metalloregulatory Cd(II) and Pb(II) sites of S. aureus pI258 CadC [J].
Busenlehner, LS ;
Cosper, NJ ;
Scott, RA ;
Rosen, BP ;
Wong, MD ;
Giedroc, DP .
BIOCHEMISTRY, 2001, 40 (14) :4426-4436
[10]   A nickel-cobalt-sensing ArsR-SmtB family repressor - Contributions of cytosol and effector binding sites to metal selectivity [J].
Cave, JS ;
Meng, WM ;
Pennella, MA ;
Applehoff, RJ ;
Giedroc, DP ;
Robinson, NJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (41) :38441-38448