A second-order-accurate symmetric discretization of the Poisson equation on irregular domains

被引:382
作者
Gibou, F [1 ]
Fedkiw, RP
Cheng, LT
Kang, MJ
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Stanford Univ, Sci Dept, Stanford, CA 94305 USA
[3] Stanford Univ, Math Dept, Stanford, CA 94305 USA
[4] Stanford Univ, Comp Sci Dept, Stanford, CA 94305 USA
[5] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1006/jcph.2001.6977
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider the variable coefficient Poisson equation with Dirichlet boundary conditions on an irregular domain and show that one can obtain second-order accuracy with a rather simple discretization. Moreover, since our discretization matrix is symmetric, it can be inverted rather quickly as opposed to the more complicated nonsymmetric discretization matrices found in other second-order-accurate discretizations of this problem. Multidimensional computational results are presented to demonstrate the second-order accuracy of this numerical method. In addition, we use our approach to formulate a second-order-accurate symmetric implicit time discretization of the heat equation on irregular domains. Then we briefly consider Stefan problems. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:205 / 227
页数:23
相关论文
共 30 条
[1]   The fast construction of extension velocities in level set methods [J].
Adalsteinsson, D ;
Sethian, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (01) :2-22
[2]   VARIATIONAL ALGORITHMS AND PATTERN-FORMATION IN DENDRITIC SOLIDIFICATION [J].
ALMGREN, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (02) :337-354
[3]  
ATKINS PW, 1994, PHYSICAL CHEM
[4]   ANALYSIS OF A ONE-DIMENSIONAL MODEL FOR THE IMMERSED BOUNDARY METHOD [J].
BEYER, RP ;
LEVEQUE, RJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (02) :332-364
[5]   A simple level set method for solving Stefan problems [J].
Chen, S ;
Merriman, B ;
Osher, S ;
Smereka, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (01) :8-29
[6]  
FEDKIW R, 1998, SYMMETRIC SPATIAL DI
[7]  
Fedkiw RP, 1999, J COMPUT PHYS, V152, P457, DOI 10.1006/jcph.1999.6136
[8]   The ghost fluid method for deflagration and detonation discontinuities [J].
Fedkiw, RP ;
Aslam, T ;
Xu, SJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) :393-427
[9]   An isobaric fix for the overheating problem in multimaterial compressible flows [J].
Fedkiw, RP ;
Marquina, A ;
Merriman, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (02) :545-578
[10]  
Golub G. H., 2013, Matrix Computations