Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion

被引:73
作者
Bussemaker, HJ [1 ]
Deutsch, A [1 ]
Geigant, E [1 ]
机构
[1] UNIV BONN,D-53115 BONN,GERMANY
关键词
D O I
10.1103/PhysRevLett.78.5018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A cellular automaton model is presented for random walkers with biologically motivated interactions favoring loral alignment and leading To collective motion or swarming behavior. The degree of alignment-is controlled by a sensitivity parameter, and a dynamical phase transition exhibiting spontaneous breaking of rotational symmetry occurs at a critical parameter value. The model is analyzed using nonequilibrium mean-field theory: Dispersion relations for the critical modes are derived, and a phase diagram is constructed. Mean-field prediction for the two critical exponents describing the phase transition as a function of sensitivity and density are obtained analytically.
引用
收藏
页码:5018 / 5021
页数:4
相关论文
共 16 条
[1]   Self-organized collective displacements of self-driven individuals [J].
Albano, EV .
PHYSICAL REVIEW LETTERS, 1996, 77 (10) :2129-2132
[2]   PHASE-TRANSITIONS IN A PROBABILISTIC CELLULAR AUTOMATON - GROWTH-KINETICS AND CRITICAL PROPERTIES [J].
ALEXANDER, FJ ;
EDREI, I ;
GARRIDO, PL ;
LEBOWITZ, JL .
JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (3-4) :497-514
[3]  
Alt W, 1997, DYNAMICS CELL TISSUE
[4]  
BENJACOB E, IN PRESS PHYSICA A
[5]   Analysis of a pattern-forming lattice-gas automaton: Mean-field theory and beyond [J].
Bussemaker, HJ .
PHYSICAL REVIEW E, 1996, 53 (02) :1644-1661
[6]   LATTICE-GAS MODEL FOR COLLECTIVE BIOLOGICAL MOTION [J].
CSAHOK, Z ;
VICSEK, T .
PHYSICAL REVIEW E, 1995, 52 (05) :5297-5303
[7]  
CZIROK A, 1996, PHYS REV E, V54, P1
[8]   Orientation-induced pattern formation: Swarm dynamics in a lattice-gas automaton model [J].
Deutsch, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (09) :1735-1752
[9]  
DOOLEN GD, 1990, LATTICE GAS METHODS
[10]   Molecular Turing structures in the biochemistry of the cell [J].
Hasslacher, B. ;
Kapral, R. ;
Lawniczak, A. .
CHAOS, 1993, 3 (01) :7-13