Glutamate uptake controls expression of a slow postsynaptic current mediated by mGluRs in cerebellar Purkinje cells

被引:52
作者
Reichelt, W [1 ]
Knöpfel, T [1 ]
机构
[1] RIKEN, Brain Sci Inst, Lab Neuronal Circuit Dynam, Wako, Saitama 3510198, Japan
关键词
D O I
10.1152/jn.00704.2001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
At the cerebellar parallel fiber-Purkinje cell synapse, isolated presynaptic activity induces fast excitatory postsynaptic currents via ionotropic glutamate receptors while repetitive, high-frequency, presynaptic activity can also induce a slow excitatory postsynaptic current that is mediated by metabotropic glutamate receptors (mGluR1-EPSC). Here we investigated the involvement of glutamate uptake in the expression of the mGluR1-EPSC. Inhibitors of glutamate uptake led to a large increase of the mGluR1-EPSC. D-aspartate (0.4 mM) and L(-)-threo-3-hydroxyaspartate (0.4 mM) increased the mGluR1-EPSC similar to4.5 and similar to9-fold, respectively, while dihydrokainic acid (1 mM), had no significant effect on the mGluR1-EPSC. D-aspartate (0.4 mM) shifted the concentration-response curve of the depression of the mGluR1-EPSC by the low-affinity mGluR1 antagonist (S)-a-Methyl-4-carboxyphenylglycine [( S)-MCPG] to higher concentrations and decreased the stimulus intensity and the number of necessary stimuli to evoke an mGluR1-EPSC. Depression of the mGluR1-EPSC by rapid pressure application of (S)-MCPG at varying time intervals after tetanic stimulation of the parallel fibers indicated that the glutamate concentration in the peri- and extrasynaptic space decayed with time constants of 36 and 316 ms under control conditions and with inhibition of glutamate uptake, respectively. These results show that expression of the slow mGluR-mediated excitatory postsynaptic current is controlled by glutamate transporter activity. Thus in contrast to fast glutamatergic synaptic transmission, metabotropic glutamate receptor-mediated transmission is critically dependent on the activity and capacity of glutamate uptake.
引用
收藏
页码:1974 / 1980
页数:7
相关论文
共 32 条
[1]   Fast removal of synaptic glutamate by postsynaptic transporters [J].
Auger, C ;
Attwell, D .
NEURON, 2000, 28 (02) :547-558
[2]   PROLONGED PRESENCE OF GLUTAMATE DURING EXCITATORY SYNAPTIC TRANSMISSION TO CEREBELLAR PURKINJE-CELLS [J].
BARBOUR, B ;
KELLER, BU ;
LLANO, I ;
MARTY, A .
NEURON, 1994, 12 (06) :1331-1343
[3]  
Barbour B, 1997, TRENDS NEUROSCI, V20, P377
[4]   SYNAPTIC ACTIVATION OF METABOTROPIC GLUTAMATE RECEPTORS IN THE PARALLEL FIBER-PURKINJE CELL PATHWAY IN RAT CEREBELLAR SLICES [J].
BATCHELOR, AM ;
MADGE, DJ ;
GARTHWAITE, J .
NEUROSCIENCE, 1994, 63 (04) :911-915
[5]   Pharmacological characterization of synaptic transmission through mGluRs in rat cerebellar slices [J].
Batchelor, AM ;
Knopfel, T ;
Gasparini, F ;
Garthwaite, J .
NEUROPHARMACOLOGY, 1997, 36 (03) :401-403
[6]   Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway [J].
Batchelor, AM ;
Garthwaite, J .
NATURE, 1997, 385 (6611) :74-77
[7]   Clearance of glutamate inside the synapse and beyond [J].
Bergles, DE ;
Diamond, JS ;
Jahr, CE .
CURRENT OPINION IN NEUROBIOLOGY, 1999, 9 (03) :293-298
[8]   Glutamate transporter currents in Bergmann glial cells follow the time course of extrasynaptic glutamate [J].
Bergles, DE ;
Dzubay, JA ;
Jahr, CE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14821-14825
[9]   Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression [J].
Brasnjo, G ;
Otis, TS .
NEURON, 2001, 31 (04) :607-616
[10]   The conductance underlying the parallel fibre slow EPSP in rat cerebellar Purkinje neurones studied with photolytic release of L-glutamate [J].
Canepari, M ;
Papageorgiou, G ;
Corrie, JET ;
Watkins, C ;
Ogden, D .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 533 (03) :765-772