Anharmonicity of the vacuum Rabi peaks in a many-atom system

被引:48
作者
Gripp, J
Mielke, SL
Orozco, LA
Carmichael, HJ
机构
[1] UNIV OREGON, DEPT PHYS, EUGENE, OR 97403 USA
[2] UNIV OREGON, INST CHEM PHYS, EUGENE, OR 97403 USA
来源
PHYSICAL REVIEW A | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevA.54.R3746
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have experimentally observed the evolution of the vacuum Rabi doublet into a singlet in the transmission spectrum of a cavity filled with a collection of two-level atoms. For very weak excitation the peaks behave like simple harmonic oscillators, but become anharmonic as the excitation increases. The anharmonicity grows to a point where hysteresis appears in the transmission spectrum, eventually causing the two peaks to merge into one.
引用
收藏
页码:R3746 / R3749
页数:4
相关论文
共 19 条
[1]   VACUUM-FIELD RABI SPLITTINGS IN MICROWAVE-ABSORPTION BY RYDBERG ATOMS IN A CAVITY [J].
AGARWAL, GS .
PHYSICAL REVIEW LETTERS, 1984, 53 (18) :1732-1734
[2]   VACUUM RABI SPLITTING OBSERVED ON A MICROSCOPIC ATOMIC SAMPLE IN A MICROWAVE CAVITY [J].
BERNARDOT, F ;
NUSSENZVEIG, P ;
BRUNE, M ;
RAIMOND, JM ;
HAROCHE, S .
EUROPHYSICS LETTERS, 1992, 17 (01) :33-38
[3]   Quantum rabi oscillation: A direct test of field quantization in a cavity [J].
Brune, M ;
Schmidt-Kaler, F ;
Maali, A ;
Dreyer, J ;
Hagley, E ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1800-1803
[4]   OBSERVATION OF DRESSED-EXCITON OSCILLATING EMISSION OVER A WIDE WAVELENGTH RANGE IN A SEMICONDUCTOR MICROCAVITY [J].
CAO, H ;
JACOBSON, J ;
BJORK, G ;
PAU, S ;
YAMAMOTO, Y .
APPLIED PHYSICS LETTERS, 1995, 66 (09) :1107-1109
[5]  
Carmichael H.J., 1994, CAVITY QUANTUM ELECT, P381
[6]   OBSERVATION OF A RELATIVISTIC, BISTABLE HYSTERESIS IN THE CYCLOTRON MOTION OF A SINGLE ELECTRON [J].
GABRIELSE, G ;
DEHMELT, H ;
KELLS, W .
PHYSICAL REVIEW LETTERS, 1985, 54 (06) :537-539
[7]   CASCADED OPTICAL CAVITIES WITH 2-LEVEL ATOMS - STEADY-STATE [J].
GRIPP, J ;
MIELKE, SL ;
OROZCO, LA .
PHYSICAL REVIEW A, 1995, 51 (06) :4974-4981
[8]  
KHITROVA G, UNPUB
[9]  
Landau L. D., 1960, Mechanics
[10]   THEORY OF OPTICAL BISTABILITY [J].
LUGIATO, LA .
PROGRESS IN OPTICS, 1984, 21 :69-216