A supernodal approach to sparse partial pivoting

被引:499
作者
Demmel, JW [1 ]
Eisenstat, SC
Gilbert, JR
Li, XYS
Liu, JWH
机构
[1] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[3] Lawrence Berkeley Lab, Natl Energy Res Sci Comp Ctr, Berkeley, CA 94720 USA
[4] Xerox PARC, Palo Alto, CA USA
[5] York Univ, Dept Comp Sci, N York, ON M3J 1P3, Canada
关键词
sparse matrix algorithms; unsymmetric linear systems; supernodes; column elimination tree; partial pivoting;
D O I
10.1137/S0895479895291765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate several ways to improve the performance of sparse LU factorization with partial pivoting, as used to solve unsymmetric linear systems. We introduce the notion of unsymmetric supernodes to perform most of the numerical computation in dense matrix kernels. We introduce unsymmetric supernode-panel updates and two-dimensional data partitioning to better exploit the memory hierarchy. We use Gilbert and Peierls's depth-first search with Eisenstat and Liu's symmetric structural reductions to speed up symbolic factorization. We have developed a sparse LU code using all these ideas. We present experiments demonstrating that it is significantly faster than earlier partial pivoting codes. We also compare its performance with UMFPACK, which uses a multifrontal approach; our code is very competitive in time and storage requirements, especially for large problems.
引用
收藏
页码:720 / 755
页数:36
相关论文
共 44 条
[21]  
EISENSTAT SC, 1993, HOUS S LOS ANG CA, V12
[22]   SYMBOLIC FACTORIZATION FOR SPARSE GAUSSIAN-ELIMINATION WITH PARTIAL PIVOTING [J].
GEORGE, A ;
NG, E .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06) :877-898
[23]   AN IMPLEMENTATION OF GAUSSIAN-ELIMINATION WITH PARTIAL PIVOTING FOR SPARSE SYSTEMS [J].
GEORGE, A ;
NG, E .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (02) :390-409
[24]   PREDICTING STRUCTURE IN SPARSE-MATRIX COMPUTATIONS [J].
GILBERT, JR .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (01) :62-79
[25]   ELIMINATION STRUCTURES FOR UNSYMMETRIC SPARSE LU FACTORS [J].
GILBERT, JR ;
LIU, JWH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (02) :334-352
[26]   AN EFFICIENT ALGORITHM TO COMPUTE ROW AND COLUMN COUNTS FOR SPARSE CHOLESKY FACTORIZATION [J].
GILBERT, JR ;
NG, EG ;
PEYTON, BW .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (04) :1075-1091
[27]   SPARSE MATRICES IN MATLAB - DESIGN AND IMPLEMENTATION [J].
GILBERT, JR ;
MOLER, C ;
SCHREIBER, R .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) :333-356
[28]   SPARSE PARTIAL PIVOTING IN TIME PROPORTIONAL TO ARITHMETIC OPERATIONS [J].
GILBERT, JR ;
PEIERLS, T .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (05) :862-874
[29]  
GILBERT JR, 1997, UNPUB ASSESSMENT INC
[30]  
GILBERT JR, 1993, GRAPH THEORY SPARSE