Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis

被引:83
作者
Buchanan, G
de Leeuw, E
Stanley, NR
Wexler, M
Berks, BC
Sargent, F
Palmer, T [1 ]
机构
[1] John Innes Ctr Plant Sci Res, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England
[2] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
[3] Univ E Anglia, Sch Biol Sci, Ctr Metalloprot Spect & Biol, Norwich NR4 7TJ, Norfolk, England
关键词
D O I
10.1046/j.1365-2958.2002.02853.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Escherichia coli Tat apparatus is a membrane-bound protein translocase that serves to export folded proteins synthesized with N-terminal twin-arginine signal peptides. The essential TatC component of the Tat translocase is an integral membrane protein probably containing six transmembrane helices. Sequence analysis identified conserved TatC amino acid residues, and the role of these side-chains was assessed by single alanine substitution. This approach identified three classes of TatC mutants. Class I mutants included F94A, E103A and D211A, which were completely devoid of Tat-dependent protein export activity and thus represented residues essential for TatC function. Cross-complementation experiments with class I mutants showed that co-expression of D211A with either F94A or E103A regenerated an active Tat apparatus. These data suggest that different class I mutants may be blocked at different steps in protein transport and point to the coexistence of at least two TatC molecules within each Tat translocon. Class 11 mutations identified residues important, but not essential, for Tat activity, the most severely affected being L99A and Y126A. Class III mutants showed no significant defects in protein export. All but three of the essential and important residues are predicted to cluster around the cytoplasmic N-tail and first cytoplasmic loop regions of the TatC protein.
引用
收藏
页码:1457 / 1470
页数:14
相关论文
共 47 条
[1]   Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli [J].
Anderson, LA ;
Palmer, T ;
Price, NC ;
Bornemann, S ;
Boxer, DH ;
Pau, RN .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 246 (01) :119-126
[2]   CONSTRUCTION AND PROPERTIES OF A FAMILY OF PACYC184-DERIVED CLONING VECTORS COMPATIBLE WITH PBR322 AND ITS DERIVATIVES [J].
BARTOLOME, B ;
JUBETE, Y ;
MARTINEZ, E ;
DELACRUZ, F .
GENE, 1991, 102 (01) :75-78
[3]   The Tat protein export pathway [J].
Berks, BC ;
Sargent, F ;
Palmer, T .
MOLECULAR MICROBIOLOGY, 2000, 35 (02) :260-274
[4]   A common export pathway for proteins binding complex redox cofactors? [J].
Berks, BC .
MOLECULAR MICROBIOLOGY, 1996, 22 (03) :393-404
[5]   An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria [J].
Bogsch, EG ;
Sargent, F ;
Stanley, NR ;
Berks, BC ;
Robinson, C ;
Palmer, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) :18003-18006
[6]   TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli [J].
Bolhuis, A ;
Mathers, JE ;
Thomas, JD ;
Barrett, CML ;
Robinson, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :20213-20219
[7]   Subunit interactions in the twin-arginine translocase complex of Escherichia coli [J].
Bolhuis, A ;
Bogsch, EG ;
Robinson, C .
FEBS LETTERS, 2000, 472 (01) :88-92
[8]   A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif [J].
Buchanan, G ;
Sargent, F ;
Berks, BC ;
Palmer, T .
ARCHIVES OF MICROBIOLOGY, 2001, 177 (01) :107-112
[9]  
CASADABAN MJ, 1979, P NATL ACAD SCI USA, V76, P4530, DOI 10.1073/pnas.76.9.4530
[10]   L-Arginine recognition by yeast arginyl-tRNA synthetase [J].
Cavarelli, J ;
Delagoutte, B ;
Eriani, G ;
Gangloff, J ;
Moras, D .
EMBO JOURNAL, 1998, 17 (18) :5438-5448