Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory

被引:135
作者
AbuQamar, Synan [1 ]
Chai, Mao-Feng [1 ]
Luo, Hongli [1 ]
Song, Fengming [1 ]
Mengiste, Tesfaye [1 ]
机构
[1] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
D O I
10.1105/tpc.108.059477
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The tomato protein kinase 1 (TPK1b) gene encodes a receptor-like cytoplasmic kinase localized to the plasma membrane. Pathogen infection, mechanical wounding, and oxidative stress induce expression of TPK1b, and reducing TPK1b gene expression through RNA interference (RNAi) increases tomato susceptibility to the necrotrophic fungus Botrytis cinerea and to feeding by larvae of tobacco hornworm (Manduca sexta) but not to the bacterial pathogen Pseudomonas syringae. TPK1b RNAi seedlings are also impaired in ethylene (ET) responses. Notably, susceptibility to Botrytis and insect feeding is correlated with reduced expression of the proteinase inhibitor II gene in response to Botrytis and 1-aminocyclopropane-1-carboxylic acid, the natural precursor of ET, but wild-type expression in response to mechanical wounding and methyljasmonate. TPK1b functions independent of JA biosynthesis and response genes required for resistance to Botrytis. TPK1b is a functional kinase with autophosphorylation and Myelin Basis Protein phosphorylation activities. Three residues in the activation segment play a critical role in the kinase activity and in vivo signaling function of TPK1b. In sum, our findings establish a signaling role for TPK1b in an ET-mediated shared defense mechanism for resistance to necrotrophic fungi and herbivorous insects.
引用
收藏
页码:1964 / 1983
页数:20
相关论文
共 98 条
[1]   Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection [J].
AbuQamar, Synan ;
Chen, Xi ;
Dhawan, Rahul ;
Bluhm, Burton ;
Salmeron, John ;
Lam, Stephen ;
Dietrich, Robert A. ;
Mengiste, Tesfaye .
PLANT JOURNAL, 2006, 48 (01) :28-44
[2]  
[Anonymous], 1991, PLANT TISSUE CULT
[3]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[4]  
Audenaert K, 2002, PLANT PHYSIOL, V128, P491, DOI 10.1104/pp.010605
[5]   Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea [J].
Benito, EP ;
ten Have, A ;
van't Klooster, JW ;
van Kan, JAL .
EUROPEAN JOURNAL OF PLANT PATHOLOGY, 1998, 104 (02) :207-220
[6]   Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi [J].
Berrocal-Lobo, M ;
Molina, A ;
Solano, R .
PLANT JOURNAL, 2002, 29 (01) :23-32
[7]   PROTEINASE INHIBITOR-INDUCING FACTOR ACTIVITY IN TOMATO LEAVES RESIDES IN OLIGOSACCHARIDES ENZYMICALLY RELEASED FROM CELL-WALLS [J].
BISHOP, PD ;
MAKUS, DJ ;
PEARCE, G ;
RYAN, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (06) :3536-3540
[8]   INSENSITIVITY TO ETHYLENE CONFERRED BY A DOMINANT MUTATION IN ARABIDOPSIS-THALIANA [J].
BLEECKER, AB ;
ESTELLE, MA ;
SOMERVILLE, C ;
KENDE, H .
SCIENCE, 1988, 241 (4869) :1086-1089
[9]   Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis [J].
Bodenhausen, Natacha ;
Reymond, Philippe .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2007, 20 (11) :1406-1420
[10]   Unexpected protein families including cell defense components feature in the N-myristoylome of a higher eukaryote [J].
Boisson, B ;
Giglione, C ;
Meinnel, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (44) :43418-43429