Cost analysis of stratospheric albedo modification delivery systems

被引:91
作者
McClellan, Justin [1 ]
Keith, DavidW [2 ,3 ]
Apt, Jay [4 ,5 ]
机构
[1] Aurora Flight Sci Corp, Cambridge Ctr 4, Cambridge, MA 02142 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, John F Kennedy Sch Govt, Cambridge, MA 02138 USA
[4] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[5] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA
来源
ENVIRONMENTAL RESEARCH LETTERS | 2012年 / 7卷 / 03期
基金
美国国家科学基金会;
关键词
geoengineering; albedo modification; solar radiation management; high-altitude aircraft; CLIMATE; AEROSOLS;
D O I
10.1088/1748-9326/7/3/034019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We perform engineering cost analyses of systems capable of delivering 1-5 million metric tonnes (Mt) of albedo modification material to altitudes of 18-30 km. The goal is to compare a range of delivery systems evaluated on a consistent cost basis. Cost estimates are developed with statistical cost estimating relationships based on historical costs of aerospace development programs and operations concepts using labor rates appropriate to the operations. We evaluate existing aircraft cost of acquisition and operations, perform in-depth new aircraft and airship design studies and cost analyses, and survey rockets, guns, and suspended gas and slurry pipes, comparing their costs to those of aircraft and airships. Annual costs for delivery systems based on new aircraft designs are estimated to be $1-3B to deliver 1 Mt to 20-30 km or $2-8B to deliver 5 Mt to the same altitude range. Costs for hybrid airships may be competitive, but their large surface area complicates operations in high altitude wind shear, and development costs are more uncertain than those for airplanes. Pipes suspended by floating platforms provide low recurring costs to pump a liquid or gas to altitudes as high as similar to 20 km, but the research, development, testing and evaluation costs of these systems are high and carry a large uncertainty; the pipe system's high operating pressures and tensile strength requirements bring the feasibility of this system into question. The costs for rockets and guns are significantly higher than those for other systems. We conclude that (a) the basic technological capability to deliver material to the stratosphere at million tonne per year rates exists today, (b) based on prior literature, a few million tonnes per year would be sufficient to alter radiative forcing by an amount roughly equivalent to the growth of anticipated greenhouse gas forcing over the next half century, and that (c) several different methods could possibly deliver this quantity for less than $8B per year. We do not address here the science of aerosols in the stratosphere, nor issues of risk, effectiveness or governance that will add to the costs of solar geoengineering.
引用
收藏
页数:8
相关论文
共 25 条
  • [1] Air Transport Association of America, 2009, MONTHLY JET FUEL CON
  • [2] Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1)
    Angel, Roger
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (46) : 17184 - 17189
  • [3] [Anonymous], CONTRIBUTION WORKING
  • [4] [Anonymous], 2009, Geoengineering the climate: Science, governance and uncertainty
  • [5] [Anonymous], QUESTION BALANCE WEI
  • [6] Blackstock J.J., 2009, CLIMATE ENG RESPONSE
  • [7] Boren HE, 1976, COMPUTER MODEL ESTIM
  • [8] Budyko M.I., 1982, The earth's climate: past and future
  • [9] Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?
    Crutzen, Paul J.
    [J]. CLIMATIC CHANGE, 2006, 77 (3-4) : 211 - 219
  • [10] STRATOSPHERE-TROPOSPHERE EXCHANGE
    HOLTON, JR
    HAYNES, PH
    MCINTYRE, ME
    DOUGLASS, AR
    ROOD, RB
    PFISTER, L
    [J]. REVIEWS OF GEOPHYSICS, 1995, 33 (04) : 403 - 439