Low-pressure membrane (MF/UF) fouling associated with allochthonous versus autochthonous natural organic matter

被引:196
作者
Lee, NoHwa [1 ]
Amy, Gary
Croue, Jean-Philippe
机构
[1] Univ Colorado, Boulder, CO 80309 USA
[2] UNESCO IHE Inst Water Educ, NL-2601 DA Delft, Netherlands
[3] Univ Poitiers, ESIP, F-86022 Poitiers, France
基金
美国国家科学基金会;
关键词
NOM; organic fouling; low-pressure membranes; hydrophilic fraction; colloidal organic matter; MF; UF;
D O I
10.1016/j.watres.2006.04.023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Natural organic matter (NOM) isolates/fractions; organic colloids, and hydrophobic (HPO), transphilic (TPI), and hydrophilic (HPI) fractions; isolated from a natural surface water as an allochthonous source, and in the form of algal organic matter (AOM) derived from blue green algae as an autochthonous source, were investigated in low-pressure membrane filtration. The most significant flux decline was caused by organic colloids, with an intermediate flux decline caused by AOM derived (isolated) from ground and sonicated blue green algae. 3D fluorescence excitation-emission matrix (EEM) analyses revealed that colloids and AOM contain protein-like substances, and FTIR analyses showed overlapping peaks associated with the peptide bonds in proteins and alcohols in polysaccharides originating from extra- and/or intra-cellular materials. HP-SEC results also support a high content of apparently macromolecular compounds in the colloid fraction. The presence of a divalent cation (Ca2+), hypothesized to enhance fouling by NOM acids by a reduction in molecular charge, showed little effect. Morphological analyses indicated that the surface topography of fouled UF membranes was elevated, presumably due to deposition of NOM on the membrane surface. The pores of MF membranes were reduced, suggesting pore blockage and/or constriction by NOM aggregates. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2357 / 2368
页数:12
相关论文
共 34 条
[1]  
Aiken G.R., 1988, HUMIC SUBSTANCES THE, P15
[2]   ISOLATION OF HYDROPHILIC ORGANIC-ACIDS FROM WATER USING NONIONIC MACROPOROUS RESINS [J].
AIKEN, GR ;
MCKNIGHT, DM ;
THORN, KA ;
THURMAN, EM .
ORGANIC GEOCHEMISTRY, 1992, 18 (04) :567-573
[3]   COMPARISON OF XAD MACROPOROUS RESINS FOR THE CONCENTRATION OF FULVIC-ACID FROM AQUEOUS-SOLUTION [J].
AIKEN, GR ;
THURMAN, EM ;
MALCOLM, RL ;
WALTON, HF .
ANALYTICAL CHEMISTRY, 1979, 51 (11) :1799-1803
[4]  
AVERETT RC, 1994, 2373 US GEOL SURV WA
[5]   Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae [J].
Babel, S ;
Takizawa, S ;
Ozaki, H .
WATER RESEARCH, 2002, 36 (05) :1193-1202
[6]   Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers [J].
Baker, A .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (05) :948-953
[7]   A new technique for membrane characterisation: direct measurement of the force of adhesion of a single particle using an atomic force microscope [J].
Bowen, WR ;
Hilal, N ;
Lovitt, RW ;
Wright, CJ .
JOURNAL OF MEMBRANE SCIENCE, 1998, 139 (02) :269-274
[8]   Atomic force microscope studies of membranes: Surface pore structures of diaflo ultrafiltration membranes [J].
Bowen, WR ;
Hilal, N ;
Lovitt, RW ;
Williams, PM .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 180 (02) :350-359
[9]   Nanofiltration of natural organic matter: pH and ionic strength effects [J].
Braghetta, A ;
DiGiano, FA ;
Ball, WP .
JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 1997, 123 (07) :628-641
[10]   The fouling of microfiltration membranes by NOM after coagulation treatment [J].
Carroll, T ;
King, S ;
Gray, SR ;
Bolto, BA ;
Booker, NA .
WATER RESEARCH, 2000, 34 (11) :2861-2868