Nonaqueous Production of Nanostructured Anatase with High-Energy Facets

被引:378
作者
Wu, Binghui [1 ,2 ]
Guo, Changyou [1 ,2 ]
Zheng, Nanfeng [1 ,2 ]
Xie, Zhaoxiong [1 ,2 ]
Stucky, Galen D. [3 ]
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Dept Chem, Xiamen 361005, Peoples R China
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
关键词
D O I
10.1021/ja8069715
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although solution-based synthesis is the most powerful and economic method to create nanostructured anatase TiO2, under those synthesis conditions the {101} facets are the most thermodynamically stable, making it difficult to create anatase nanomaterials with a large percentage of high-energy {001} or {010} facets exposed. Here, we report a facile nonaqueous synthetic route to prepare anatase nanosheets with exposed {001} facets and high-quality rhombic-shaped anatase nanocrystals with a large percentage of exposed {010} facets. Including adscititious water in the nonaqueous synthesis and eliminating the use of carboxylic acid type capping agents are the two keys to integrating the structural diversity from aqueous systems into large-quantity synthesis in nonaqueous systems. The nanostructured TiO2 that we prepared exhibits conspicuous activity in the photocatalytic degradation of organic contaminants.
引用
收藏
页码:17563 / 17567
页数:5
相关论文
共 53 条
[31]   Nonaqueous sol-gel routes to metal oxide nanoparticles [J].
Niederberger, Markus .
ACCOUNTS OF CHEMICAL RESEARCH, 2007, 40 (09) :793-800
[32]   Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles [J].
Niederberger, Markus ;
Garnweitner, Georg .
CHEMISTRY-A EUROPEAN JOURNAL, 2006, 12 (28) :7282-7302
[33]   Nonaqueous synthesis of metal oxide nanoparticles: Review and indium oxide as case study for the dependence of particle morphology on precursors and solvents [J].
Niederberger, Markus ;
Garnweitner, Georg ;
Buha, Jelena ;
Polleux, Julien ;
Ba, Jianhua ;
Pinna, Nicola .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2006, 40 (2-3) :259-266
[34]   A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS [J].
OREGAN, B ;
GRATZEL, M .
NATURE, 1991, 353 (6346) :737-740
[35]   The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio [J].
Oskam, G ;
Nellore, A ;
Penn, RL ;
Searson, PC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (08) :1734-1738
[36]   Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania [J].
Penn, RL ;
Banfield, JF .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1999, 63 (10) :1549-1557
[37]   Surfactant-free nonaqueous synthesis of metal oxide nanostructures [J].
Pinna, Nicola ;
Niederberger, Markus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (29) :5292-5304
[38]   Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy [J].
Pottier, AS ;
Cassaignon, S ;
Chanéac, C ;
Villain, F ;
Tronc, E ;
Jolivet, JP .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (04) :877-882
[39]   In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals [J].
Seo, JW ;
Jun, YW ;
Ko, SJ ;
Cheon, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (12) :5389-5391
[40]   Formation of TiO2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates [J].
Stathatos, E ;
Lianos, P ;
DelMonte, F ;
Levy, D ;
Tsiourvas, D .
LANGMUIR, 1997, 13 (16) :4295-4300