Missing Data and Multiple Imputation

被引:139
作者
Cummings, Peter [1 ,2 ]
机构
[1] Univ Washington, Dept Epidemiol, Seattle, WA 98195 USA
[2] Univ Washington, Harborview Injury Prevent & Res Ctr, Seattle, WA 98195 USA
关键词
PREDICTOR VALUES; STRATEGIES; REGRESSION; BIAS;
D O I
10.1001/jamapediatrics.2013.1329
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Missing data can result in biased estimates of the association between an exposure X and an outcome Y. Even in the absence of bias, missing data can hurt precision, resulting in wider confidence intervals. Analysts should examine the missing data pattern and try to determine the causes of the missingness. Modern software has simplified multiple imputation of missing data and the analysis of multiply imputed data to the point where this method should be part of any analyst's toolkit. Multiple imputation will often, but not always, reduce bias and increase precision compared with complete-case analysis. Some exceptions to this rule are noted in this review. When describing study results, authors should disclose the amount of missing data and other details. Investigators should consider how to minimize missing data when planning a study.
引用
收藏
页码:656 / 661
页数:6
相关论文
共 29 条
[1]   STATISTICS NOTES - ABSENCE OF EVIDENCE IS NOT EVIDENCE OF ABSENCE [J].
ALTMAN, DG ;
BLAND, JM .
BRITISH MEDICAL JOURNAL, 1995, 311 (7003) :485-485
[2]   A comparison of imputation techniques for handling missing predictor values in a risk model with a binary outcome [J].
Ambler, Gareth ;
Omar, Rumana Z. ;
Royston, Patrick .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (03) :277-298
[3]   Imputations of missing values in practice: Results from imputations of serum cholesterol in 28 cohort studies [J].
Barzi, F ;
Woodward, M .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2004, 160 (01) :34-45
[4]   A comparison of inclusive and restrictive strategies in modern missing data procedures [J].
Collins, LM ;
Schafer, JL ;
Kam, CM .
PSYCHOLOGICAL METHODS, 2001, 6 (04) :330-351
[5]   P Values vs Estimates of Association With Confidence Intervals [J].
Cummings, Peter ;
Koepsell, Thomas D. .
ARCHIVES OF PEDIATRICS & ADOLESCENT MEDICINE, 2010, 164 (02) :193-196
[6]   Review: A gentle introduction to imputation of missing values [J].
Donders, A. Rogier T. ;
van der Heijden, Geert J. M. G. ;
Stijnen, Theo ;
Moons, Karel G. M. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2006, 59 (10) :1087-1091
[7]  
Enders C. K., 2010, APPL MISSING DATA AN
[8]   Addressing Missing Data in Clinical Trials [J].
Fleming, Thomas R. .
ANNALS OF INTERNAL MEDICINE, 2011, 154 (02) :113-+
[9]   A critical look at methods for handling missing covariates in epidemiologic regression analyses [J].
Greenland, S ;
Finkle, WD .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1995, 142 (12) :1255-1264
[10]   Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis [J].
Groenwold, Rolf H. H. ;
White, Ian R. ;
Donders, Rogier T. ;
Carpenter, James R. ;
Altman, Douglas G. ;
Moons, Karel G. M. .
CANADIAN MEDICAL ASSOCIATION JOURNAL, 2012, 184 (11) :1265-1269