Robust parameter estimation in computer vision

被引:288
作者
Stewart, CV [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
关键词
computer vision; robust statistics; parameter estimation; range image; stereo; motion; fundamental matrix; mosaic construction; retinal imaging;
D O I
10.1137/S0036144598345802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Estimation techniques in computer vision applications must estimate accurate model parameters despite small-scale noise in the data, occasional large-scale measurement errors (outliers), and measurements from multiple populations in the same data set. Increasingly, robust estimation techniques, some borrowed from the statistics literature and others described in the computer vision literature, have been used in solving these parameter estimation problems. Ideally, these techniques should effectively ignore the outliers and measurements from other populations, treating them as outliers, when estimating the parameters of a single population. Two frequently used techniques are least-median of squares (LMS) [P. J. Rousseeuw, J. Amer. Statist. Assoc., 79 (1984), pp. 871-880] and M-estimators [Robust Statistics: The Approach Based on Influence Functions, F. R. Hampel et al., John Wiley, 1986; Robust Statistics, P. J. Huber, John Wiley, 1981]. LMS handles large fractions of outliers, up to the theoretical limit of 50% for estimators invariant to affine changes to the data, but has low statistical efficiency. M-estimators have higher statistical efficiency but tolerate much lower percentages of outliers unless properly initialized. While robust estimators have been used in a variety of computer vision applications, three are considered here. In analysis of range images-images containing depth or X, Y, Z measurements at each pixel instead of intensity measurements-robust estimators have been used successfully to estimate surface model parameters in small image regions. In stereo and motion analysis, they have been used to estimate parameters of what is called the "fundamental matrix," which characterizes the relative imaging geometry of two cameras imaging the same scene. Recently, robust estimators have been applied to estimating a quadratic image-to-image transformation model necessary to create a composite, "mosaic image" from a series of images of the human retina. In each case, a straightforward application of standard robust estimators is insufficient, and carefully developed extensions are used to solve the problem.
引用
收藏
页码:513 / 537
页数:25
相关论文
共 82 条
[2]  
[Anonymous], 1981, From Images to Surfaces: A Computational Study of the Human Early Visual System
[3]   MODEL-BASED OBJECT RECOGNITION IN DENSE-RANGE IMAGES - A REVIEW [J].
ARMAN, F ;
AGGARWAL, JK .
COMPUTING SURVEYS, 1993, 25 (01) :5-43
[4]  
AYER S, 1995, FIFTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, PROCEEDINGS, P777, DOI 10.1109/ICCV.1995.466859
[5]   FITTING OF POWER-SERIES, MEANING POLYNOMIALS, ILLUSTRATED ON BAND-SPECTROSCOPIC DATA [J].
BEATON, AE ;
TUKEY, JW .
TECHNOMETRICS, 1974, 16 (02) :147-185
[6]   Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination [J].
Becker, DE ;
Can, A ;
Turner, JN ;
Tanenbaum, HL ;
Roysam, B .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (01) :105-118
[7]  
BERGEN JR, 1992, LECT NOTES COMPUT SC, V588, P237
[8]  
Besl P.J., 1988, Surfaces in Range Image Understanding, V1th
[9]   THREE-DIMENSIONAL OBJECT RECOGNITION. [J].
Besl, Paul J. ;
Jain, Ramesh C. .
Computing surveys, 1985, 17 (01) :75-145
[10]   SEGMENTATION THROUGH VARIABLE-ORDER SURFACE FITTING [J].
BESL, PJ ;
JAIN, RC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (02) :167-192