Marine magnetic anomalies as recorders of geomagnetic intensity variations

被引:33
作者
Gee, J
Schneider, DA
Kent, DV
机构
[1] SCI AMER INC,NEW YORK,NY 10017
[2] LAMONT DOHERTY EARTH OBSERV,PALISADES,NY 10964
关键词
magnetic intensity; magnetic anomalies; paleomagnetism; marine sediments; Brunhes Epoch;
D O I
10.1016/S0012-821X(96)00184-7
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In addition to providing a robust record of past geomagnetic polarity reversals, marine magnetic anomalies often show shorter wavelength variations, which may provide information on geomagnetic intensity variations within intervals of constant polarity. To evaluate this possible geomagnetic signal, we compare sea surface profiles of the Central Anomaly with synthetic profiles based on Brunhes age (0-0.78 Ma) paleointensity records derived from deep sea sediments. The similarity of the synthetic profiles and observed profiles from the ultra-fast spreading southern East Pacific Rise suggests that geomagnetic intensity variations play an important role in the magnetization of the oceanic crust. This interpretation is further supported by systematic variations in the pattern of the Central Anomaly at slower spreading ridges, which are entirely consistent with a progressively smoother record of the sediment-derived paleointensity. If the sedimentary records, as calibrated to available absolute paleointensity data, accurately record variations in dipole intensity over the Brunhes, it follows that much of the Brunhes was characterized by geomagnetic intensities lower than either the mean dipole moment for the past 10 ka or the average for the period from 0.05 to 5.0 Ma. Furthermore, the sediment paleointensity records reflect the significant increase in geomagnetic intensity, from a low of similar to 2 x 10(22) Am-2 near 40 ka to a peak value (11 x 10(22) Am-2) at similar to 3 ka, that has been well documented from absolute paleointensity determinations, We suggest that geomagnetic intensity variations may be the most important cause of the rapid changes in the source layer magnetization near the ridge crest and the resultant Central Anomaly Magnetic High.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 40 条
[1]  
[Anonymous], 1964, R SOC CAN SPEC PUBL
[2]  
BICKNELL JD, 1987, MARINE GEOPHYSICAL R, V9, P25
[3]   GEOMAGNETIC REVERSALS AND CRUSTAL SPREADING RATES DURING MIOCENE [J].
BLAKELY, RJ .
JOURNAL OF GEOPHYSICAL RESEARCH, 1974, 79 (20) :2979-2985
[4]   INTENSITY OF GEOMAGNETIC FIELD IN QUATERNARY [J].
BUCHA, V ;
HORACEK, J ;
RYBAR, J .
STUDIA GEOPHYSICA ET GEODAETICA, 1968, 12 (01) :56-&
[5]   A NEW GEOMAGNETIC POLARITY TIME SCALE FOR THE LATE CRETACEOUS AND CENOZOIC [J].
CANDE, SC ;
KENT, DV .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1992, 97 (B10) :13917-13951
[6]   ULTRAHIGH RESOLUTION MARINE MAGNETIC ANOMALY PROFILES - A RECORD OF CONTINUOUS PALEOINTENSITY VARIATIONS [J].
CANDE, SC ;
KENT, DV .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1992, 97 (B11) :15075-15083
[7]   BEHAVIOR OF EARTHS PALEOMAGNETIC FIELD FROM SMALL-SCALE MARINE MAGNETIC-ANOMALIES [J].
CANDE, SC ;
LABREQUE, JL .
NATURE, 1974, 247 (5435) :26-28
[8]  
CANDE SC, 1995, EOS, V76, pF169
[9]  
Emilia D. A., 1972, Marine Geophysical Researches, V1, P436, DOI 10.1007/BF00286745
[10]   Geomagnetic field intensity over the last 42,000 years from core SOH-4, Big Island, Hawaii [J].
Garnier, F ;
HerreroBervera, E ;
Laj, C ;
Guillou, H ;
Kissel, C ;
Thomas, DM .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1996, 101 (B1) :585-600