Bioenergy that supports ecological restoration

被引:22
作者
Nackley, Lloyd L. [1 ,2 ]
Lieu, Valerie H. [1 ,3 ]
Garcia, Betzaida Batalla [1 ,4 ]
Richardson, Jeffrey J. [1 ,2 ]
Isaac, Everett [1 ]
Spies, Kurt [1 ,3 ]
Rigdon, Steve [1 ]
Schwartz, Daniel T. [3 ]
机构
[1] Univ Washington, Bioresource Based Energy Sustainable Soc Program, Seattle, WA 98195 USA
[2] Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA
[3] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[4] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
HABITAT SUITABILITY MAP; BIOFUELS; ENERGY; BENEFITS; ETHANOL; FUEL;
D O I
10.1890/120241
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Bioenergy development can offer beneficial ecological and economic synergies through the expansion of ecological restoration projects. Such synergies are demonstrated by means of a case study conducted in central Washington State, where a 52.4-ha ecological restoration site on the Yakama Reservation generated 34 mega-grams (Mg) of invasive tree biomass per hectare, costing $988 ha(-1). A geospatial model of transportation costs estimated that extracted invasive tree biomass can generate revenues throughout 1103 803 ha when delivered to a proposed bioenergy facility in White Swan, Washington, providing 53 000-180 000 Mg of biomass per year for several decades. Thermochemical analyses revealed that the elevated nitrogen, sulfur, and ash content in two prolific invasive trees - Russian olive (Elaeagnus angustifolia) and salt cedar (Tamarix spp) - will limit demand for either of these invasive species. We compare our regional data to national estimates, and show the broader potential for expanding ecological restoration activities and biomass supplies through the revenues generated by the sale of invasive tree wood-waste into bioenergy markets.
引用
收藏
页码:535 / 540
页数:6
相关论文
共 17 条
[1]   The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences [J].
Baxter, LL ;
Miles, TR ;
Miles, TR ;
Jenkins, BM ;
Milne, T ;
Dayton, D ;
Bryers, RW ;
Oden, LL .
FUEL PROCESSING TECHNOLOGY, 1998, 54 (1-3) :47-78
[2]   Biofuels agriculture: landscape-scale trade-offs between fuel, economics, carbon, energy, food, and fiber [J].
Bryan, Brett A. ;
King, Darran ;
Wang, Enli .
GLOBAL CHANGE BIOLOGY BIOENERGY, 2010, 2 (06) :330-345
[3]   Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US [J].
Davis, Sarah C. ;
Parton, William J. ;
Del Grosso, Stephen J. ;
Keough, Cindy ;
Marx, Ernest ;
Adler, Paul R. ;
DeLucia, Evan H. .
FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2012, 10 (02) :69-74
[4]   Ethanol can contribute to energy and environmental goals [J].
Farrell, AE ;
Plevin, RJ ;
Turner, BT ;
Jones, AD ;
O'Hare, M ;
Kammen, DM .
SCIENCE, 2006, 311 (5760) :506-508
[5]   Combustion Characteristics of Biomass Residues and Biowastes: Fate of Fuel Nitrogen [J].
Giuntoli, Jacopo ;
de Jong, Wiebren ;
Verkooijen, Adrian H. M. ;
Piotrowska, Patrycja ;
Zevenhoven, Maria ;
Hupa, Mikko .
ENERGY & FUELS, 2010, 24 (10) :5309-5319
[6]   Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels [J].
Hill, Jason ;
Nelson, Erik ;
Tilman, David ;
Polasky, Stephen ;
Tiffany, Douglas .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (30) :11206-11210
[7]   The Benefits of Harvesting Wetland Invaders for Cellulosic Biofuel: An Ecosystem Services Perspective [J].
Jakubowski, Andrew R. ;
Casler, Michael D. ;
Jackson, Randall D. .
RESTORATION ECOLOGY, 2010, 18 (06) :789-795
[8]   Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree [J].
Jarnevich, Catherine S. ;
Reynolds, Lindsay V. .
BIOLOGICAL INVASIONS, 2011, 13 (01) :153-163
[9]  
Morisette JT, 2006, FRONT ECOL ENVIRON, V4, P11, DOI 10.1890/1540-9295(2006)004[0012:ATHSMF]2.0.CO
[10]  
2